
Crash	 Course	 in	 Java	
	
	

Based	 on	 notes	 from	 Dennis	 Frey,	 Susan	
Mitchell,	 John	 Park,	 D.	 Hollinger	 and	 J.J.	 Johns,	
and	 material	 from	 Java	 in	 a	 Nutshell	 and	 Java	
Network	 Programming	 and	 Distributed	
Compu:ng	

Java History

l  Created by Sun Microsystems team led by
James Gosling (1991)

l  Originally designed for programming home
appliances

l  Difficult task because appliances are controlled by a wide
variety of computer processors

l  Writing a compiler (translation program) for each type of
appliance processor would have been very costly.

l  Solution: two-step translation process
l  compile, then
l  interpret

• 2

First	 Program	

public class Hello {
 public static void main(String args[]) {
 System.out.println("Hello World");
 }
}

• 3

Python vs. Java – A Little Sample

• 4

Python:

print “Hello, world”
quotient = 3 / 4
if quotient == 0:
 print “3/4 == 0”,
 print “in Python”
else:
 print “3/4 != 0”

Java:

public class Hello {
 public static void main(String[] args) {
 int quotient;

 System.out.println(“Hello, world”);
 quotient = 3 / 4;
 if (quotient == 0) {
 System.out.print(“3/4 == 0”);
 System.out.println(“ in Java”);
 }
 else {
 System.out.println(“3/4 != 0”);
 }
 }
}
// Things to note:
// Everything has to be in some class
// We need a “main()”
// Statements end with ‘;’
// Variables must be declared
// “if/else” syntax different
// Statement blocks demarcated by “{…}”
// Comments are different J
// …but there is much that is similar

Compiling and Running Java

• 5

Java
Code

Java
Bytecode

JRE for
Linux

JRE for
Windows

Java compiler

Hello.java

javac Hello.java

Hello.class

Java interpreter (JVM)
translates bytecode to
machine code in JRE

Compilers, Interpreters, and the JVM

• 6

compile

compile interpret

source code

source code

Compiled Languages (e.g. C, C++)

bytecode

binary code execute

Java

interpret source code

Interpreted Languages (e.g. JavaScript, Perl, Ruby)

Small, easy to write

Interpreter is unique to each processor

Interpreter translates one code instruction
at a time into binary and executes it

Compiler is unique
to each processor

JVM is unique to each processor

Bytecode is processor
independent

Java Virtual Machine
(JVM)

Java Terminology
Java acronyms are plentiful and confusing. Here are the basics.

l  JVM – Java Virtual Machine
l  Translates Java bytecode to machine code

l  API – Application Programming Interface

l  Java code libraries

l  JRE – Java Runtime Environment

l  The JVM and the Java API together

l  JDK (formerly SDK) – Java Development Kit

l  JRE + tools (compiler, debugger) for developing Java applications and applets

l  J2SE – Java 2 Platform, Standard Edition

l  The JRE and JDK products taken as a “family”

l  To learn more about JDK, JRE, etc, visit:

http://java.sun.com/javase/technologies/index.jsp

• 7

Java Versions

l  Current version of Java: Java 7, also known as
Java 1.7 or Java 1.7.0

l  Previous version: Java 6, also known as Java
1.6, Java 1.6.0 or “Java 2 SE Version 6”

l  To learn more about Java version naming, visit:
 http://java.sun.com/javase/namechange.html

• 8

The Eclipse IDE

•  An integrated development environment (IDE) for
writing Java programs. Contains (minimally):
l  editor
l  debugger
l  Java compiler
l  Java JVM

l  Free download for your PC (link on course website)

l  Available in the computing labs

l  We’ll show you more later

• 9

• 10

Eclipse IDE Screenshot

Java	 Basics	

• 11

Simple “Procedural” Java

• 12

public class MyClass {
 static boolean sawNonZero = false;

 public static void main(String[] args) {
 System.out.print(“Hello, world”);

 int quotient = 3 / 4;
 if (testNonZero(quotient)) {
 System.out.print(“\nQuotient is non-zero\n”);
 }
 }

 static boolean testNonZero(int value) {
 if (value != 0) {
 sawNonZero = true;
 return true;
 } else
 return false;
 }
}

Java Program Basics
•  All code has to be inside some class definition

–  For now, we can think of this like in terms of file/module, or
namespace

•  All programs begin execution at main()

•  This is much like in C, but…
•  You can have a different main() in every class: pick at runtime

•  System.out.print()
–  Outputs text to the screen

System.out.print(“Hello”);

–  There is also System.out.println(), which terminates w/newline
•  Can program procedurally:

–  Just put the word “static” in front of all functions and global
variables.

• 13

Variable Declarations
•  Format: type variable-name;
•  Examples:

 int total;
 float salary;

•  Variables may be declared anywhere in the
code, but may not be used until declared.
–  Note the declaration of int quotient; in the sample

program.
•  This feature allows you to declare variables close to where

they are used, making code more readable.
•  However, “can” doesn’t imply “should”—in general,

declarations are often best at top of a block

• 14

Variable Declarations (con’t)

•  When we declare a variable, we tell Java:
– When and where to set aside memory space for

the variable
– How much memory to set aside
– How to interpret the contents of that memory:

the specified data type
– What name we will be referring to that location

by: its identifier

• 15

• 16

Naming Conventions
•  Variables, methods, and objects

–  Start with a lowercase letter
–  Indicate "word" boundaries with an uppercase letter
–  Restrict the remaining characters to digits and

lowercase letters
–  Can use underscores

topSpeed bankRate1 timeOfArrival

•  Classes
–  Start with an uppercase letter
–  Otherwise, adhere to the rules above

FirstProgram MyClass String

• 17

Primitive Types

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Fixed Size for Primitive Types

•  Java byte-code runs on the Java Virtual
Machine (JVM).

– Therefore, the size (number of bytes) for each
primitive type is fixed.

– The size is not dependent on the actual
machine/device on which the code executes.

– The machine-specific JVM is responsible for
mapping Java primitive types to native types
on the particular architecture

• 18

Operators	

•  Assignment:	 	 =,	 +=,	 -‐=,	 *=,	 /=,	 %=…	
•  Numeric:	 	 	 +,	 -‐,	 *,	 /,	 %,	 ++,	 -‐-‐,	 …	
•  RelaMonal:	 	 	 ==,	 !=,	 <,	 >,	 <=,	 >=,	 …	
•  Boolean:	 	 	 &&,	 ||,	 !	
•  Bitwise:	 	 	 	 &,	 |,	 ^,	 ~,	 <<,	 >>,	 …	

• 19

ArithmeMc	 Operators	 	
Rules	 of	 Operator	 Precedence	

   Operator(s) Precedence & Associativity
 () Evaluated first. If nested,

innermost first. If on same level,
left to right.

* / % Evaluated second. If there are
 several, evaluated left to right.

+ – Evaluated third. If there are
 several, evaluated left to right.

 = Evaluated last, right to left.
• 20

PracMce	 With	 EvaluaMng	 Expressions	

   Given integer variables a, b, c, d, and e,
where a = 1, b = 2, c = 3, d = 4,

   evaluate the following expressions:

   a + b - c + d
   a * b / c
   1 + a * b % c
   a + d % b - c
   e = b = d + c / b - a

• 21

A Hand Trace Example

   int answer, value = 4 ;
   Code Value Answer

 4 garbage
   value = value + 1 ;
   value++ ;
   ++value ;
   answer = 2 * value++ ;
   answer = ++value / 2 ;
   value-- ;
   --value ;
   answer = --value * 2 ;
   answer = value-- / 3 ;

• 22

More Practice

   Given
   int a = 1, b = 2, c = 3, d = 4 ;

   What is the value of this expression?

   ++b / c + a * d++

   What are the new values of a, b, c, and d?

• 23

Assignment Operators

   = 	 	 	 	 	 += 	 	 -‐= 	 	 	 *= 	 	 	 	 	 /= 	 	 %=	
   Statement	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Equivalent	 Statement	
   a	 =	 a	 +	 2	 ;	 	 	 	 	 a	 +=	 2	 ;	
   a	 =	 a	 -‐	 3	 ;	 	 	 	 	 a	 -‐=	 3	 ;	
   a	 =	 a	 *	 2	 ;	 	 	 	 	 a	 *=	 2	 ;	
   a	 =	 a	 /	 4	 ;	 	 	 	 	 	 	 	 	 	 	 	 a	 /=	 4	 ;	
   a	 =	 a	 %	 2	 ; 	 	 	 	 a	 %=	 2	 ;	
   b	 =	 b	 +	 (c	 +	 2)	 ; 	 	 b	 +=	 c	 +	 2	 ;	
   d	 =	 d	 *	 (e	 -‐	 5)	 ;	 	 	 d	 *=	 e	 -‐	 5	 ;	

• 24

• 25

Type Casting
•  A type cast takes a value of one type and produces a

value of another type with an "equivalent" value.

int n, m;
double ans = n / (double)m;
 OR
double ans = (double)n / m;
 OR
double ans = (double)n / (double)m;

–  The type and value of n and m do not change.

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
	 All	 rights	 reserved	

• 26

Java Comparison Operators

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 27

Boolean Expressions
•  Operators: &&, ||, !

•  Boolean expression evaluates to the values true or
false

•  Simple Boolean expressions:

time < limit
yourScore == myScore

–  Two equal signs (==): equality testing
–  Single equal sign (=): assignment

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

Control	 Structures	

• 28

Java Flow Control

•  Decisions
 if, if-else, switch

•  Loops
 for, while, do-while

•  Boolean expressions
–  Java flow control constructs evaluate Boolean

expressions
–  The expression must be of boolean type:

•  Cannot do: “if (--c)…”; must do: “if (--c != 0)…”

• 29

if-else & while Statements

   if (condition1) {
   statement(s)
   } else if (condition2) {
   statement(s)
   }
   . . . /* more else if clauses may be here */
   } else {
   statement(s) /* the default case */
   }

   while (condition) {
   statement(s)
   }

• 30

Example

   while (children > 0) {
   children = children - 1 ;
   cookies = cookies * 2 ;
   }

• 31

Good Programming Practice

•  Always place braces around the bodies of
the if and else clauses of an if-else
statement.

•  Advantages:
– Easier to read
– Will not forget to add the braces if you go back

and add a second statement to the clause
– Less likely to make a semantic error

•  Indent the bodies of the if and else clauses
3 to 4 spaces -- be consistent!

• 32

Example

   …
   factorial = 1;
   while (myNumber > 0) {
   factorial *= myNumber;
   --myNumber;
   }
   return factorial;

• 33

The 3 Parts of a Loop

 …
 int i = 1 ; initialization of loop control variable

 // count from 1 to 100
 while (i < 101) { test of loop termination condition
 System.out.println(i) ;
 i = i + 1 ; modification of loop control variable
 }
 return 0 ;

}

• 34

The for Loop Repetition
Structure

•  The for loop handles details of the counter-controlled
loop “automatically”.

•  The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

 for (i = 1; i < 101; i = i + 1) {

 initialization modification
 } test

• 35

When Does a for Loop Initialize, Test and
Modify?

•  Just as with a while loop, a for loop
–  initializes the loop control variable before

beginning the first loop iteration
– performs the loop termination test before each

iteration of the loop
– modifies the loop control variable at the very

end of each iteration of the loop
•  The for loop is easier to write and read for

counter-controlled loops.

• 36

for Loop Examples
•  A for loop that counts from 0 to 9:

 // modify part can be simply “i++”
for (i = 0; i < 10; i = i + 1) {
 System.out.println(i) ;
}

•  …or we can count backwards by 2’s :
 // modify part can be “i -= 2”
for (i = 10; i > 0; i = i - 2) {

 System.out.println(i) ;
}

• 37

The	 do-‐while	 RepeMMon	
Structure	

do {
 statement(s)

} while (condition) ;

•  The body of a do-while is ALWAYS

executed at least once. Is this true of a
while loop? What about a for loop?

• 38

The break & continue Statements

•  The break & continue statements can be
used in while, do-while, and for loops to cause
the remaining statements in the body of the loop
to be skipped; then:
–  break causes the looping itself to abort, while…
–  continue causes the next turn of the loop to start. In

a for loop, the modification step will still be executed.

• 39

Example break in a for Loop

 …
 int i ;
 for (i = 1; i < 10; i = i + 1) {
 if (i == 5) {
 break;
 }
 System.out.println(i);
 }
 System.out.println(“\nBroke out of loop at i = “ + i);

• 40

• OUTPUT:

•  1 2 3 4

• Broke out of loop at i = 5.

Example continue in a for Loop

 …
 int i;
 for (i = 1; i < 10; i = i + 1) {
 if (i == 5) {
 continue;
 }
 System.out.println(i);
 }
 System.out.println(“Done”);

• 41

OUTPUT:

 1 2 3 4 6 7 8 9

Done.

Problem: continue in while Loop

 // This seems equivalent to for loop
 // in previous slide—but is it??
 …
 int i = 1;
 while (i < 10) {
 if (i == 5) {
 continue;
 }
 System.out.println(i);
 i = i + 1;
 }
 System.out.println(“Done”);

• 42

OUTPUT:

???

The switch Multiple-Selection Structure

switch (integer expression)
{

 case constant1 :
 statement(s)
 break ;
 case constant2 :
 statement(s)
 break ;

 . . .
 default: :
 statement(s)
 break ;

}

Notes:
•  break and default are

keywords

•  If no break, execution flows
through to next case

•  If no default, switch might
not do execute anything

• 43

switch Example

switch (day) {
 case 1: System.out.println (“Monday\n”) ;
 break ;
 case 2: System.out.println (“Tuesday\n”) ;
 break ;
 case 3: System.out.println (“Wednesday\n”) ;
 break ;
 case 4: System.out.println (“Thursday\n”) ;
 break ;
 case 5: System.out.println (“Friday\n”) ;
 break ;
 case 0:
 case 6: System.out.println (“Weekend\n”) ;
 break ;
 default: System.out.println (“Error -- invalid day.\n”) ;
 break ;

}

• 44

Variable Scope
Variable scope:
•  That set of code statements in which the variable

is known to the compiler

•  Where it can be referenced in your program.

•  Limited to the code block in which it is defined.

–  A code block is a set of code enclosed in braces ({ }).

One interesting application of this principle allowed

in Java involves the for loop construct.

• 45

for-loop index
•  Can declare and initialize variables in the heading

of a for loop.
•  These variables are local to the for-loop.
•  They may be reused in other loops.

 String s = “hello world”;
 int count = 1;
 for (int i = 0; i < s.length(); i++)
 {
 count *= 2;
 }
 //using 'i' here generates a compiler error

• 46

Named Constants
•  No “hard coded” values inside code!
•  Declare constants as named constants, and use their

name instead

public static final int INCHES_PER_FOOT = 12;
public static final double RATE = 0.14;

–  The “final” modifier prevents a value from being
changed inadvertently.

–  More about public and static later
–  Naming convention for constants

•  Use all uppercase letters
•  Designate word boundaries with an underscore character

• 47

Comments	 and	 DocumentaMon	

• 48

• 49

Comments
•  Line comment

–  Begins with the symbols //
–  Compiler ignores remainder of the line
–  Used for the coder or for a programmer who modifies the code

 if (birthYear > currentYear) // birth year is invalid
 then . . .

•  Block comment
–  Begins with /* and ends with */
–  Compiler ignores anything in between
–  Can span several lines
–  Provides documentation for the users of the program

 /* File: Date
 Author: Joe Smith
 Date: 9/1/09
 */

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 50

Comments & Named Constants

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley	
All	 rights	 reserved	

Special Javadoc Comment Form

•  Similar to block comment, but:
–  Begins with /**
–  Not special to Java: considered same as “/*”
–  Processed by separate Javadoc program that creates

HTML documentation pages from program source
–  Known set of embedded tags have special meaning

to Javadoc.
•  E.g.: @param, @return

–  For an example:
http://download.oracle.com/javase/6/docs/api/java/
lang/String.html

• 51

Strings	

• 52

• 53

The String Class
•  No primitive type for strings in Java

•  String is a predefined class in the Java language.
–  Used to store and process strings

•  Objects of type String are made up of strings of
characters within double quotes.
–  Any quoted string is a constant of type String.

 "Live long and prosper."

•  A variable (object) of type String can be given the value
of a String constant.

 String blessing = “Live long and prosper.“
 String greeting = “Hello”;
 String name = “Bob”;

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 54

String Concatenation
•  Use the + operator

String greeting = “Hello”;
String name = “Bob”;
greeting + name is equal to “HelloBob”

•  Any number of strings can be concatenated together.

•  When a string is combined with almost any other type of item, the result is a
string

 “The answer is “ + 42 evaluates to
 “The answer is 42“

•  Strings also support the += operator

 String greeting = ”Hello”;
 greeting += “ Bob”; changes greeting to “Hello Bob”

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 55

String Methods
•  The String class contains many useful methods (operations) for string-

processing applications.

•  Calling a String method:

 String-object-name.method-name (arguments); OR

 variable = String-object-name.method-name (arguments);

•  Example

String greeting = “Hello“; //greeting is an object
int count = greeting.length();
System.out.println(“Length is “ + greeting.length());

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 56

Some Methods in the Class String (1 of 4)

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 57

Some Methods in the Class String (2 of 4)

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 58

Some Methods in the Class String (3 of 4)

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

• 59

Some Methods in the Class String (4 of 4)

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

• 60

Escape Sequences

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley	
All	 rights	 reserved	

•  The character following the backslash does not have its usual
meaning.

•  It is formed using two symbols, but regarded as a single
character.

• 61

Pitfall: Using == with Strings
•  The equality operator (==) can test the stored values of two values of a primitive type.

 int x = 5, y = 5;
 if (x == y) . . . // returns true

•  When applied to two objects, == tests to see if they are stored in the same memory
location. Example:

 String string1 = “hello”;
 String string2 = “hello”;
 if (string1 == string2) . . . // returns false

•  To test two strings to see if they have equal values, use the String method equals,

or equalsIgnoreCase.

if (string1.equals(string2)) // returns true
 or
if (string1.equalsIgnoreCase(string2)) // returns true

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
All	 rights	 reserved	

Other Pitfalls with Strings
•  Be careful with concatenation: associativity and

promotion still applies:
–  Consider the following two expressions:

 4 + 2 + “is the answer to everything”;
vs.:
 “The answer to everything is “ + 4 + 2;

•  A String is immutable
–  There is no way to modify any chars in a String:

•  E.g.: “someString.charAt(x)” doesn’t let you change that char
–  But what does “immutable” really mean? Consider:
 String immutable = “Yes”;
immutable = “No”;
// Why is this allowed? And what of “+=“?

(See bad example)

• 62

Arrays	

• 63

• 64

Arrays
•  Array: A data structure used to process a

collection of data that is all of the same type.

•  An array is declared and created using the new
operator.

BaseType[] ArrayName = new BaseType[size];

•  The size may be given
•  as a non-negative integer, or
•  as an expression that evaluates to a nonnegative integer.

char[] line = new char[80];
double[] reading = new double[count];

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

• 65

Declaring vs. Creating Arrays
•  Example

 double[] score = new double[5];

 or, using two statements:

 double[] score; // declares
 score = new double[5]; // creates

•  The 1st statement declares score to be of the array
type double[] (an array of doubles).

•  The 2nd statement
–  creates an array with five numbered values of type double
–  makes the variable score a name for the array

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

• 66

The length Instance Variable
•  An array is considered to be an object.

•  Every array has exactly one instance variable
(characteristic) named length.

–  When an array is created, the instance variable
length is automatically set equal to its size.

–  The value of length cannot be changed (other than by
creating an entirely new array using new).

double[] score = new double[5];

–  Given score above, score.length has a value of 5.

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

• 67

Initializing Arrays
•  An array can be initialized when it is declared.

•  Example:
int[] age = {2, 12, 1};

•  Given age above, age.length automatically
has a value of 3.

 System.out.print(“Length is “ + age.length);

prints
Length is 3

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

Notes	 on	 Arrays	

•  index	 starts	 at	 0.	
•  arrays	 can’t	 shrink	 or	 grow.	
•  each	 element	 is	 iniMalized.	
•  array	 bounds	 checking	 (no	 overflow!)	

– ArrayIndexOutOfBoundsExcepMon	

• 68

• 69

Initializing Arrays
•  Using a for loop,
double[] reading = new double[100];
for(int index = 0; index < reading.length; index++){
 reading[index] = 42.0;
}

•  Using	 array	 literals:	
int[] foo = {1,2,3,4,5};
String[] names = {“Joe”, “Sam”};

•  If the elements of an array are not initialized

explicitly, they will automatically be initialized to the
default value for their base type.

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

An Array Coding Exercise

•  Write a code fragment that finds the
smallest value in an array of integers.

• 70

• 71

Arrays as Parameters
•  An array may be a method argument. Example:

 public void doubleElements(double[] a) // a = address
 {
 for (int i = 0; i < a.length; i++) // notice use
 a[i] = a[i]*2; // of a.length
 }

•  Given arrays of double as follows:

 double[] a = new double[10];
 double[] b = new double[30];

 the method doubleElements can be invoked as follows:

 doubleElements(a);
 doubleElements(b);

6-71
Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

• 72

Pitfall: Use of = with Arrays
•  An array variable contains the memory

address of the array it names.

•  The assignment operator (=) only copies
this memory address.

int a[] = {1, 2, 3};
int b[] = new int[3];

b = a; // b and a are now names for
 // the same array

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

• 73

Pitfall: Use of = with Arrays

•  A for loop is usually used to make two different
arrays have the same values in each indexed
position.

int i;
int a[] = {1, 2, 3};
int b[] = new int[3];
for (i = 0; (i < a.length) && (i < b.length); i++)
 b[i] = a[i];

–  Note that the above code will not make b an exact
copy of a, unless a and b have the same length

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

• 74

Pitfall: Use of == with Arrays

•  The equality operator (==) only tests two arrays
to see if they are stored in the same memory
location.

(a == b)

is true if a and b reference the same array.
Otherwise, it is false.

•  An equalsArray method can be defined to
test arrays for value equality.
–  The following method tests two integer arrays to see if

they contain the same integer values.
Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

• 75

Code to Test for Value Equality
public boolean equalsArray(int[] a, int[] b)
{
 if (a.length == b.length)
 {
 int i = 0;
 boolean elementsMatch = true;

 while (i < a.length && elementsMatch)
 {
 if (a[i] != b[i])
 elementsMatch = false;
 i++;
 }
 return elementsMatch;

 }
 else
 return false;

}

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Strings and Arrays Are Objects

•  It’s important to keep in mind that despite
syntactic shortcuts (e.g., “hello” + “bye”,
foo[x]), strings and arrays are objects
– They have real methods
– They have constructors, which must be called

to create new instances.
•  Otherwise, you just have null references.

• 76

ExcepMon	 Handling	

• 77

ExcepMons	

•  Terminology:	
–  throw	 an	 excep:on:	 signal	 that	 some	 condiMon	
(possibly	 an	 error)	 has	 occurred.	

– catch	 an	 excep:on:	 deal	 with	 the	 error	 (or	
whatever).	

•  In	 Java,	 excepMon	 handling	 is	 necessary	
(forced	 by	 the	 compiler)!	

• 78

Try/Catch/Finally	
try {
 // code that can throw an exception
} catch (ExceptionType1 e1) {
 // code to handle the exception
} catch (ExceptionType2 e2) {
 // code to handle the exception
} catch (Exception e) {
 // code to handle other exceptions
} finally {
 // code to run after try or any catch
}

• 79

ExcepMon	 Handling	

•  ExcepMons	 take	 care	 of	 handling	 errors	
–  instead	 of	 returning	 an	 error,	 some	 method	 calls	
will	 throw	 an	 excepMon.	

•  Can	 be	 dealt	 with	 at	 any	 point	 in	 the	 method	
invocaMon	 stack.	

•  Forces	 the	 programmer	 to	 be	 aware	 of	 what	
errors	 can	 occur	 and	 to	 deal	 with	 them.	

• 80

ExcepMon	 Example	
staMc	 String	 squareNumberString(String	 str)	 {	

	 int	 n;	
	 try	 	 {	

	 	 	 	 	 	 n	 =	 Integer.parseInt(str);	
	 }	 	 catch	 (NumberFormatExcepMon	 e)	 	 {	

	 	 	 	 	 	 System.err.println(“Error:	 	 invalid	 integer	 \””	 +	 str	 +	 ”\””);	
	 	 System.exit(1);	
	 }	
	 return	 “”+	 Math.pow(n,2);	

}	

• 81

A	 Beper	 ExcepMon	 Example	
staMc	 String	 squareNumberString(String	 str)	 {	

	 int	 n;	
	 try	 	 {	

	 	 	 	 	 	 n	 =	 Integer.parseInt(str);	
	 }	 	 catch	 (NumberFormatExcepMon	 e)	 	 {	

	 	 	 	 	 	 throw	 new	 InvalidArgumentExcepMon(“str	 must	 contain	 a	
	 	 	 	 	 	 valid	 integer”);	
	 }	
	 return	 “”+	 Math.pow(n,2);	

}	

• 82

Input/Output	
•  The	 java.io	 package	 provides	 classes	 for	 reading	 and	
wriMng	 streaming	 (sequenMal)	 data	

•  Example:	 	 reading	 lines	 from	 the	 console	
	 import	 java.io.*;	

	
	 BufferedReader	 console	 =	 new	 BufferedReader(new	 	
	 	 	 	 	 	 	 InputStreamReader(System.in));	
	 System.out.print(“Enter	 your	 name:	 	 “);	
	 String	 name	 =	 null;	
	 try	 {	
	 	 name	 =	 console.readLine();	
	 }	 	 catch	 (IOExcepMon	 e)	 	 {	
	 	 System.err.println(“Fatal	 input	 error:	 “+e);	
	 	 System.exit(1);	
	 }	
	 System.out.println(“Hello	 “+name);	

•  File	 input/output	 is	 similar,	 but	 more	 on	 that	 later	
• 83

Objects	 and	 Classes	

• 84

What’s an Object?
l  Must first define a class

l  A data type containing
l  Attributes - make up the object’s “state”
l  Operations - define the object’s “behaviors”

• 85

deposit money
withdraw money
check balance
transfer money
more?

Bank Account
account number
owner’s name
balance
interest rate
more?

String
sequence of characters
more?

compute length
concatenate
test for equality
more? operations

(behaviors)

name

attributes
(state)

So, an object is …
l  a particular “instance” of a class.

• 86

Berg’s Account Frede’s Account Mitchell’s Account

43-261-5
Sarah Mitchell
$825.50
2.5%

For any of these accounts, one can

•  deposit money

•  withdraw money

•  check the balance

•  transfer money

12-345-6
Jen Berg
$1,250.86
1.5%

65-432-1
Dennis Frede
$5.50
2.7%

Class Definitions
•  You already know

– how to use classes and the objects created
from them, and

– how to invoke their methods.

•  For example, you have already been using
the predefined String class.

String name = “Fido”;
System.out.println(“name length = “ + name.length
());

• 87

A Class Is a Type
•  A class is a programmer-defined type.

•  Variables can be declared of a class type.

•  A value of a class variable type is called an
object or an instance of the class.

–  If A is a class, then the phrases

•  “X is of type A“
•  “X is an object of the class A"
•  “X is an instance of the class A"

 mean the same thing

• 88

Objects

•  All objects of a class have the same methods.

•  All objects of a class have the same attributes
(i.e., name, type, and number).

–  For different objects, each attribute can hold a
different value.

–  The values of the attributes define the object state,
which is what makes each object unique.

• 89

The Class Definition
•  A class definition implements the class model.

–  The class behaviors/services/actions/operations are
implemented by class methods.

–  The class attributes (data items) are called fields or
instance variables.

•  In Java, classes are defined in files with the .java
extension.

•  The name of the file must match the name of the
class defined within it.
–  e.g. class ‘Baker’ must be in Baker.java

• 90

Anatomy of a Java Class

Visibility modifier
(More on this later) Name of the class Keyword class

public class Date1

{

}

Class body: instance variables, methods

NO semi-colon

• 91

Instance Variables
•  Defined inside the class definition

•  May be
–  primitive types
–  other class types

•  Are accessible by all methods of the class
–  have class scope

•  Given the services identified for the red-green-
yellow traffic light, the garage door opener and
the bank account, what instance variables might
be defined for each?

• 92

Anatomy of a Method

Are very much like functions

Visibility modifier
(More on this later)

Name of the method

return type

public double toCelcius

{

}

Method code: local variables and statements

 (double fTemp)

Optional parameters

• 93

Example: A Date Class
This class definition goes in a file named

Date1.java.

public class Date1
{
 public String month;
public int day;

 public int year;

 public String toString()
 {
 return month + “ “ + day + “, “ + year;
 }

}

These are the (public)“data members” or
“instance variables” of the class

This is a method definition and its
implementation

A method may use the class instance variables

• 94

Date1 toString Method
•  toString is a method of the Date1 class.

–  Its definition and implementation are part of the Date1
class.

•  Class methods may
–  be void or return a value, and
–  (optionally) have parameters, which may be

•  primitive types passed by value, and/or
•  objects (discussed later).

•  All of a class’ methods have access to all of the
class’ instance variables (class scope).

• 95

Using Date1
This class definition goes in a file named Date1Demo.java.

public class Date1Demo
{
 public static void main(String[] args)
{

 Date1 myDate;
 myDate = new Date1();

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

 String dateString = myDate.toString();
 System.out.println(dateString);

 }

}

Create a Date1 object
named myDate

Give values to the data
members

Invoke the toString method

• 96

Creating the Date1 Object

•  The statement Date1 myDate; defines a variable of
type Date1.
–  But there is no Date1 object yet!

•  The statement myDate = new Date1(); creates a
“new” Date1 object and names it with the variable
“myDate”.
–  Now “myDate” refers to a Date1 object.

•  For convenience, these statements can be

combined.
 Date1 myDate = new Date1();

• 97

“Dot” Notation
•  Public instance variables of an object are

referenced using the “dot” operator.

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2011;

•  Instance variables can be used like any other
variable of the same type.

•  The set of values stored in all instance variables
define the state of the myDate object.

• 98

More “Dot” Motation
•  The statement

myDate.toString();

 invokes the toString method of myDate, which
refers to an object of type Date1.

•  In OO terminology, we say that we are “sending
the toString message” to the object referred to
by myDate.

•  The object myDate is referred to as the calling
object or host object.

• 99

Other Date Methods
Some other possible services that the Date1

class might provide:

•  incrementDay - changes the date to
“tomorrow”

•  DMYString – creates a different string format
•  setDate - initialize/change the year, month,

and/or day
•  What others ?

• 100

New Date1 Methods
 // change the month (using an int), day, and year.
 public void setDate(int newMonth, int newDay, int newYear)
 {
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 }

 // change month number (int) to string - used by setDate

 public String monthString(int monthNumber) {
 switch (monthNumber) {
 case 1: return "January";
 case 2: return "February";
 case 3: return "March";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
 default: return “????”;
 }
 }

 • 101

Confusion?
•  In the preceding setDate method it’s tempting to define

the method using the common terms “month”, “day” and
“year” as the parameters.

public void setDate(int month, int day, int year)

 {
 month = monthString(month);// which month is which?
 day = day; // which day is which?
 year = year; // which year is which?
 }

The compiler assumes that all uses of day, month, and

year refer to the method parameters and hence this code
has no effect.

• 102

Calling Object
When any class method is called, the instance variables

used within the method are assumed to belong to the
calling/host object.

What the code in setDate is really trying to do is

public void setDate(int month, int day, int year)
 {
 “calling object”.month = monthString(month);

 “calling object”.day = day;
 “calling object”.year = year;
 }

It’s handy (and sometimes necessary) to have a name for
the calling object.

In Java, we use the reserved word this as the generic
name of the calling object.

• 103

Using this
So, if we want to name our parameters the same as our

instance variables:

 public void setDate(int month, int day, int year)
 {
 this.month = monthString(month); // notice “this”
 this.day = day;
 this.year = year;
 }

Note:
•  Many examples in the text use this technique for class

methods.
•  Some Java programmer tools (including Eclipse) use this

technique when writing code for you.
• 104

this Again
Recall the toString method from Date1:

 public void toString()
 {
 return month + “ “ + day + “ “ + year;
 }

It’s clear that month, day, and year refer to the instance
variables of the calling object because there are no
parameters.

We could have written:
 public void toString()
 {
 return this.month + “ “ + this.day + “ “ + this.year;
 }

If the prefix this is unnecessary, it is usually omitted.
• 105

Sample Code Segment Using Date1

Date1 newYears = new Date1();
newYears.month = “January”;
newYears.day = 1;
newYears.year = 2011;

Date1 birthday = new Date1();
birthday.month = “July”;
birthday.day = 4;
birthday.year = 1776;

System.out.println(newYears.toString()); // line 1
System.out.println(birthday.toString()); // line 2
System.out.println(birthday.monthString(6)); // line 3
birthday.setDate(2, 2, 2002); // line 4
System.out.println(birthday.toString()); // line 5
newYears.day = 42; // line 6
System.out.println(newYears.toString()); // line 7

• 106

August 42, 2011
•  It appears that classes allow the user to

change the data anytime he or she
chooses, possibly making the data invalid.

•  That’s true so far because we have

defined our instance variables with
public access.

•  This is rarely the case in real applications.
• 107

• 108

More About Methods
•  Different classes can define a method with the same

name.
•  Java can determine which method to call based on the

type of the calling object.
•  Example:

 Date1 birthday = new Date1();
 Dog fido = new Dog();

 System.out.println(birthday.toString());
 System.out.println(fido.toString());

–  birthday.toString() will call the toString() method
defined in the Date1 class because birthday’s type is Date1.

–  fido.toString() will call the toString() method defined in
the Dog class because fido’s type is Dog.

• 109

Method Overloading
•  Two or more methods in the same class

may also have the same name.

•  This technique is known as method
overloading.

• 110

Overloaded setDate
•  The Date1 class setDate method:

public boolean setDate(int month, int day, int year)

•  Suppose we wanted to change only the day
and year?
– Define another method named setDate:
 public boolean setDate(int day, int year)

(After all, setDate is a good descriptive name for
what this method does.)

• 111

Date2 Class - Overloaded setDate
Method

public class Date2
{
 public String month;
 public int day; // 1 - 31
 public int year; // 4 digits

 public boolean setDate(int newMonth, int newDay, int newYear)
 {
 // code here
 }

 public boolean setDate(int newDay, int newYear);
 {
 // code here, doesn’t change month
 }

 // toString(), monthString(), etc. follow

}

• 112

Date2Demo Class
public class Date2Demo
{
 public static void main (String[] args)
 {
 Date2 myDate = new Date2();

 myDate.setDate(1, 23, 1982);
 System.out.println(myDate.toString());
 myDate.setDate(4, 1999);
 System.out.println(myDate.toString());
 }

}

How does Java know which setDate method to invoke?

• 113

Method Signature

•  A method is uniquely identified by
–  its name and
–  its parameter list (parameter types and their

order).
•  This is known as its signature.

Examples:

public boolean setDate(int newMonth, int newDay, int newYear)
public boolean setDate(String newMonth, int newDay, int newYear)
public boolean setDate(int newDay, int newYear)
public boolean setDate(int newDay, String newMonth)

• 114

Return Type is Not Enough
•  Suppose we attempt to create an overloaded
setDay() method by using different return types.

 public void setDay(int day) { /* code here */ }
 public boolean setDay(int day) { /* code here */ }

•  This is NOT valid method overloading because the
code that calls setDay() can ignore the return
value.

 birthday.setDay(22);

•  The compiler can’t tell which setDay() method to
invoke.

•  Just because a method returns a value doesn’t
mean the caller has to use it.

• 115

Too Much of a Good Thing
Automatic type promotion and overloading can

sometimes interact in ways that confuse the
compiler. Example:

public class X {
 //version 1
 public void printAverage (int a, double b) {
 /*code*/
 }

 //version 2
 public void printAverage (double a, int b) {
 /*code*/
 }

}

Why might this be problematic?

• 116

Too Much of a Good Thing

 public void printAverage (int a, double b) {/*code*/}
 public void printAverage (double a, int b) {/*code*/}

•  Now, consider this:

 X myX = new X();
 myX.printAverage(5, 7);

•  The Java compiler can’t decide whether to:
–  promote 7 to 7.0 and invoke the first version of

printAverage(), or
–  promote 5 to 5.0 and invoke the second.

•  It will throw up its hands and complain
•  Take-home lesson: don’t be too clever with

method overloading

More Documentation

• 117

Class-level Documentation
•  Class header format:

/**
 * File: Table.java
 * Project: CMSC 206 Assignment 1, Fall 2011
 * Date: 9/29/2011
 * E-mail: jdoe22@brynmawr.edu
 * Class Description:
 * @author Jane Doe
 */

• 118

Method-level Documentation
•  Method header format:

/**
 * Name: circleArea
 * PreCondition: the radius is greater than zero
 * PostCondition: none
 * @param radius - the radius of the circle
 * @return the calculated area of the circle
 * (@throws – optional)
 */
double circleArea (double radius) {
 // handle unmet precondition
 if (radius < 0.0) {
 return 0.0;
 } else {
 return Math.PI * radius * radius;
 }
} • 119

Instance Variable Documentation
•  Javadoc wants the variable descriptions on line

before actual declaration:

/** first name of the account holder */
String firstName;
/**
 * the last name of the account holder
 * (note we can have a multi-line description).
 */
String lastName;

• 120

Method Documentation
•  Clear communication with the class user is of

paramount importance so that he can
–  use the appropriate method, and
–  use class methods properly.

•  Method comments:
–  explain what the method does, and
–  describe how to use the method.

•  Two important types of method comments:
–  precondition comments
–  post-conditions comments

• 121

Preconditions and Postconditions

•  Precondition
– What is assumed to be true when a method is

called
–  If any pre-condition is not met, the method may

not correctly perform its function.
•  Postcondition

– States what will be true after the method
executes (assuming all pre-conditions are met)

– Describes the side-effect of the method, e.g. if
state of instance changes

• 122

An Example
Very often the precondition specifies the limits of the

parameters and the postcondition says something
about the return value.

/*
 Pre-condition:
 1 <= month <= 12
 day appropriate for the month
 1000 <= year <= 9999
 Post-condition:
 The month, day, and year of the calling object

 have been set to the parameter values.
 @return true if the calling object has been changed,
 false otherwise

*/
public boolean setDate(int month, int day, int year)
{
 // code here

}
• 123

