Variables and Control Structures

CS 110
Eric Eaton and Paul Ruvolo

Assignment 2

* It should have a background generated using
randomness and iteration (for or while loops)
[covered today]

* Each time the user presses a key, the program
should erase whatever is displayed and redraw the
random background. The background should be
different with each subsequent keypress. [covered
today]

e As the user clicks on the sketch, it should draw an
object at that location. Something about the
physical shape of this object must change based on
its location. [already covered]

Review: Variables

* A name to which data can be assigned

* Avariable name is declared as a specific data type

o

* Names must begin with a letter, “_” or “S” and can

container letters, digits, “ " and “S”

boolean bReady = true;

int 1i;

int jJ = 12;

float £Size = 10.0;

color red = color(255,0,0);
String namel23 = “Fred”;

PImage 1mg;

Review: Variable Uses
e Use a value throughout your program,
— but allow it to be changed

e As temporary storage for an intermediate computed
result

e ...elc

Primitive Data Types

Type Range Default Bytes

boolean { true, false } false ?

byte {0..255} 0 1

int {-2,147,483,648 0 4
.. 2,147,483,647 }

long {-9,223,372,036,854,775,808 0 8

..9,223,372,036,854,775,807 }

float {-3.40282347E+38 0.0 4
.. 3.40282347E+38 }

double much larger/smaller 0.0 8

color { #00000000 .. #FFFFFFFF } black 4

char a single character 'a’, 'b’, ... '\u0000' 2

Conditionals: if-else-if-statement

1f (boolean expression 1) {
statements;

} else 1f (boolean expression 2) {
statements;

} else 1f (boolean expression 3) {
statements;,

} else {

statements;

void setup () { What does this do?
size(500, 500);
smooth () ;

void draw () {

1f (mouseX > 100)
{

background(255, 0, 0);
} else 1f (mouseX > 200)
{

background(0, 0, 255);
}

An Aside: Handling Keyboard Events

void keyPressed() {
// Called each time a key is pressed

void keyReleased() {
// Called each time a key is released

void keyTyped() {
// Called when a key is pressed
// Called repeatedly if the key is held down

keyCode vs. key

key

— A built-in variable that holds the character that was just
typed at the keyboard

keyCode

— A built-in variable that holds the code for the keyboard key
that was touched

All built-in keyboard interaction functions ...
« Set keyCode to the integer that codes for the keyboard key
» Set key to the character typed
« All keyboard keys have a keyCode value
* Not all have a key value (can you think of an example?)

ASCII - American Standard Code for Information Interchange

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0 1 2 3 4 5 6 7 8 9
! " # $ % & '
() i + , - / 0 1
2 3 4 5 6 7 8 9 ;
< = > ? @ A B C D E
F G H I J K L M N O
P Q R S T u Vv W X Y
z [\] A _ b c
d e f g h [j k I m
n o] p q r S t u v
X y z { | } ~ €
p ” t ¥ " %o S ¢
c z , : " ” .
- — " ™ §) ce z Y
[¢ £ X ¥ ! ©
a « - . ® - ° + 2 3
H 1 , ' e » % %
% ¢ A A A A A A £ C
E E E E i [T I b N
o o) o) 0 0 x @ U U 0
U Y p R E 4 a a 4 4
® c e é é é i i i i
d A o) o 0 o) + ¢ u
u y v y p y

List of Key Codes

Check processing API:
http://processing.org/reference/keyCode.html

Built-in key code variables:
— UP, DOWN, LEFT, RIGHT

Others can be found at:
http://docs.oracle.com/javase/6/docs/api/java/awt/

event/KeyEvent.html

List of numerical key codes:
http://home-1.worldonline.nl/~bmc88/java/sbook/

021.html

Conditionals: switch-statement

* Works like a if-else statement.
* Convenient for large numbers of value tests.

switch(expression) {

case labell: // labell equals expression
statements;
break;

case labell2: // label2 equals expression
statements;
break;

default: // Nothing matches

statements;

Conditionals: switch-statement

* Works like a if-else statement.
* Convenient for large numbers of value tests.

switch(expression) {

case labell: // labell equals expression

Any idea
what this
does?

statements;

break; €—

case labell2: // label2 equals expression
statements;
break;

default: // Nothing matches

statements;

void setup () { What does this do?
size (500, 500);
smooth () ;

void draw () {}
void keyPressed() {

switch (key)
{

case '1l':

case 'L':
println ("Turning left");
break;

case 'r':

case 'R':

println ("Turning right");
break;

int positionX = 250;
int positionY = 250;
int deltaX = 0;
int deltaY = 0;

void setup () {
size (500, 500);
smooth () ;

void draw () {
background (255) ;

positionX = positionX + deltaX;
positionY = positionY + deltaY;

if (positionX < 0)
positionX = 0;

if (positionX > width)
positionX = width;

if (positionY < 0)
positionY = 0;

if (positionY > height)
positionY = height;

ellipse (positionX, positionY, 50, 50);

void keyPressed()

switch (keyCode)

case LEFT:

deltaX =

deltayY
break;

case RIGHT:
deltaX =

deltaY
break;
case UP:
deltaY
deltaX
break;

case DOWN:
deltaY =

deltaX
break;

{

Introduction to Loops

* Whatis aloop? Executing the same code over and
over again.

 We are already using loops, you just might not know
it.

* How would | write a program to draw many random
lines?

Introduction to Loops

* What if | only want to draw 200 lines and then stop?

Another Program

 What if we don’t want to wait for the lines to show
up? How can | modify the program to do that?

We Need Something More Flexible: Iteration

Repetition of a program block

* |terate when a block of code is to repeated multiple
times.

Options
* The while-loop
 The for-loop

Iteration: while-loop

while (boolean expression) {
Statements;
// continue;
// break;

* Statements are repeatedly executed while the boolean
expression evaluates to true;

* To break out of a while loop, call break;
* To stop execution of statements and start again, call continue;

200 Random Lines

size(500,500);

background(255);

inti=0;

while (i < 200) {
stroke(random(0,255),random(0,255),random(0,255));
line(random(0,width),random(0,height),random(0,width),random(0,height));
| = i+1;

}

Doing something different in each “iteration”
of the loop

* How would | write code to generate the following
image in processing?

void setup () {
size (500, 500);

smooth () ; What does this do?

float diameter = 500.0;

while (diameter > 1.0) {
ellipse(250, 250, diameter, diameter);
diameter = diameter * 0.9;
}
}
void draw () { }
void setup () {

size (500, 500);
smooth () ;

float diameter = 500.0;

while (true) {
ellipse(250, 250, diameter, diameter);
diameter = diameter * 0.9;

if (diameter <= 1.0) break;

void draw () { }

An aside ... Operators

+, -, *, / and ...

i4++4; equivalent to i =14+ 1;
i += 2; equivalent to i =14+ 2;
i-—; equivalent to i=1i-1;
i —-= 3; equivalent to i =1 - 3;
i *= 2; equivalentto i =1 * 2;
i /= 4; equivalent to i =1/ 4;

i % 3; the remainder after i is divided by 3 (modulo)

