Scope, Tracing, and Basic
Trigonometry

2/10/16

+ .
Review

m Parameterizing a shape
= have a default size frame for your shape to fit in.

alter position relative to the reference point and scale

alter size relative to scale.

instead of scale
m use a scaled reference size frame

= Functions and named constants improve readability,
reusability, and scalability of your code.

m Variable Lifetime and Scope
= global variables

Shadowing -
mWhen there is a name conflict between variables of
different scopes

int x = 10;
void setup() {
int x = 5;
int y = x;

}

mThe conflicting variables can not have different types
(orit's considered a re-declaration and is not
allowed)

mWhen shadowed, smaller (inner) scopes have
precedence over larger (outer) scopes

int vl = 1; -
void setup() {
int v2 = 2;

m What is printed?

for (int v3 <= 3; v3++) {

int v4

m What happens if the second v3
declaration is removed?

println(v2);

println(v3);

println(va) ;

//println(vs) ;
}

m What would happen if the v5
print statement is executed?

= What would happen if
commented statements in
aFunction were called?

int v3 = 6;
println(v3) ;

aFunction (v2) ;

}

void aFunction (int v5) {
println("------ aFunction------ "
println(vl);
//println(v2) ;
//println(v3) ;
//printin(vd) ;
println(vs) ;

}

Example

m scopelines

+ .
Code tracing

m We learn to read code by executing the code line by line
= Do not jump ahead
m Do exactly what the code says, step by step

m Keep a diagram of all variables and update them
accordingly

= Mistakes are almost always due to skipping steps

+ .
Trace this

1 int n = 365;

2 int sum = 0;

3 int digit;

4 while(n>0) {

5 digit = n%10;
6 sum += digit;
7 n /= 10;

8 }

9 println(sum);

2/10/16

+
Nested loops

m You can put a loop within a
loop

m Nesting levels are unlimited,
but in practice programmers
rarely go beyond 3

= Two loops nested is very
common, especially when
dealing with naturally 2-
dimensional structures (grids)

m for(...){
for(...){
}
}
mwhile(...){
while(...){
}
}
mfor(...){
while(...){
}
}
mwhile(...){

+
Nested for

int i, j, end =

for (j = 1i; j
print("*") ;
}
println();
}

for (i = 1; i <= end;

10;

<= end;

i++) {

j++) |

for(...){
}
}
+
Nested for

int i, j, end = 10;

for (i = 1; i <= end; i++) {
for (j =1; j <= 1i; j++) {

print("*");

}
println();

}

Examples

m indexTile (one loop)

= indexTile (loop with nested Loop)

+
Basics of Trigonometry assuming

right/up axes

h
(hypotenuse)

o
(opposite)

—

a
(adjacent)

2/10/16

+
Basics of Trigonometry assuming
right/up axes

h
(hypotenuse)

o

Recall: (opposite)

ar2 + o2 = h"2

(adjacent)

+
Basics of Trigonometry assuming

right/up axes

h
(hypotenuse)

+
Definition
msin(q) = o/h

mo = h*sin(q)

mcos(q) = a/h

ma = h*cos(q)

mtangent(q) = o/a = sin(q)/cos(q)

* Trigonometry on Processing unit circle

origin X

90’

o =h *sin(q)
Recall: opposite
e (opposite)
sin(g) = o/h
h q cos(q) = a/h
(adjacent)
Trigonometry on a uréig; circle
Recall:
X2 + y*2 = "2
r=1 o]
1
(1xcos(q))"2 # \
(1%sin(q))~2 r !
= 172 1
vy
or q |——|I 0“
cos”2(q) + origin X
sin*2(q) =
1
Trigonometry on a uréig; circle
r
a 0

Trigonometry on a urgiot,circle
)

2/10/16

Drawing points along a circle

int steps = 8;
int radius = 20;
float angle = 2*PI/steps;

for (int i=0; i<steps; i++) {
float x = cos(angle*i)*radius;

float y = sin(angle*i)*radius;

// draw a point every 1/8th of a circle
ellipse(x, y, 10, 10);

+
Examples

= points on a circle

m overlapping ellipses on a circle
m spokes

= polygon

m nested version (star)

+
Example: cyclical change

= Drawing a sine wave
m Using sine to manipulate height of an object

m Using cosine to manipulate width of an object

