Review

* Expressions and operators
* lteration

— while-loop

— for-loop

Coding styles and assignment hand-ins

¢ Headers
¢ Comments

* Indentation
¢ Parentheses
* Spacing

* Processing’s “Auto
Format” command

e Ctrl-Shift-F/Ctrl-click

* Copy the entire sketch
folder, not just the
contents

* Create a separate
document for your
write-up, don’t put it in
the header

* Put the image file
(screen shot) and the
write-up document all
in the sketch folder

Examples

* text (demo text alignment)

* concentric
e forText

« forCircle
« flowers

‘ logical expression ‘

@

for (Init; condition; update) {

for Loop
* Pattern ‘statement‘
o/ @
®body
}

— Each section can be blank.

— Sequence: © @O® ... @0® @ (condition fails)

break Statements

¢ Exit from a loop
¢ Typically used with an i £ statement

while (cond) {

break;

Example

for(int i=1; i<=100; i++) {

if (i > 50)
break;
println(i);
}

2/3/16

continue Statements

* Continue to the beginning of a loop
— l.e., the condition will be checked

¢ Typically used with an i £ statement

while (cond) {

continue;

Example

for(int i=1; i<=100; i++) {
if (i >= 20 && i <= 30)
continue;
println(i);

More on Loops

* Loop index
— for (int i=0; i<10; i++) {..}
— startatOor1?
— stop at <n or <=n?
— the value of i changes every iteration
* You can run it the other way around too!
— for (int i=10; i>0; i--) {..}

Examples

* concentric
* manyShapes

Functions Informally

* The basic idea — we write a sequence of statements
and then give that sequence a name. We can then
execute this sequence at any time by referring to the
name.

* Function definition: this is where you create a function
and define exactly what it does

* Function call: when a function is used in a program, we
say call it with its name and parameters.

¢ A function can only be defined once, but can be called
many times.

Examples

void setup() { .. }
void draw() { ..}

* Return value, function name, parameter list
and function body

* Avoid function doesn’t return anything

void circleAndLine() {
ellipse (random(width) , random(height), 10, 10);
line (random(width) , random(height),
random(width) , random(height)) ;

2/3/16

Functions

* Modularity

—Allow the programmer to break down larger
programs into smaller parts.

—Promotes organization and manageability.

* Reuse

—Enables the reuse of code blocks from
arbitrary locations in a program.

Function Example

* manyShapesFunction

Mathematical Functions
y=f(x)
y=twice(x)=2x

a=area(r)=mr’

1 if x>0
y=rfx=

0 otherwise

Functions: Terminology

y = twice(x) = 2x

-

Return value Function name Function parameter Function definition

Function application:

y = twice(5)

y =10

/ Function argument

Result

Functions: Defining Functions

y = twice(x) = 2x

7N T

Return value Function name Function parameter Function definition

float twice(float x) {
returnm 2*x;
} // twice()

Function Parameters

 Parameters (arguments) can be “passed in” to a
function and used in body.

* Parameters are a comma-delimited set of
variable declarations.

* Parameters act as input to a function.

* Passing parameters provides a mechanism to
execute a function with many different sets of
input.

* We can call a function many times and get
different results by changing its parameters.

2/3/16

What happens when we call a function?

* Execution of the main (calling) program is
suspended.

* The argument expressions are evaluated.

The resulting values are copied into the
corresponding parameters.

* The statements in the function's body are
executed in order.

* Execution of the main program is resumed
when a function exits (finishes).

Parameterizing a shape

* Have code that draws something with a bunch of

coordinates

* Want to draw the same thing anywhere, in any size

and repeat any number of times

* How is a shape defined?

— areference point (center, corner)
— a base size

* To move, scale and repeat

— put code in a function
— xandy increments
— scaling factor

Examples

* penguin

* penguinTranslate
* penguinScale

* penguins

2/3/16

