
CS340 - Stable Matching Write-up Example

Kyu Chang and Kewei Qu
Collaborators: Sorelle Friedler

September 5, 2016

1 Problem A

1.1 Description

Initially, all applicants and employers are unpaired. An employer e, who is not paired with
an applicant makes an offer to applicant a, where a is the highest-ranked applicant in e’s
preference list who e has not made an offer to yet. a can be either unpaired or a can be
already paired with another employer e′. If a is unpaired then pair e and a. If a is already
paired with e′ then check if a prefers e to e′. If a prefers e to e′ then unpair e′ and a and
pair e and a. Otherwise, e remains unpaired. Continue this process until every employer
is paired or every employer who is not paired makes an offer to every applicant.

1



1.2 Pseudocode

Function findStableMatching(E, A)
All e ∈ E and a ∈ A are unpaired
while there is an e unpaired that hasn’t made an offer to every a do

choose such an e
let a be the highest-ranked applicant in e’s preference list who e has not
made an offer to yet
if a is unpaired then

pair a and e
end
else

a is currently paired with e′

if a prefers e’ to e then
e remains unpaired

end
else

a is paired with e and e′ becomes unpaired
end

end

end
return the set of pairs

1.3 Time Analysis

Each iteration consists of some employer making an offer to an applicant the employer has
never made an offer to before. Let n be |E| and |A|. Since each employer can make at
most n offers and there are n employers. There can be at most n2 iterations of the While
loop.

In order to run the algorithm in O(n2), the following operations need to be done in O(1).

1. Checking/choosing if there is an e unpaired that hasn’t made an offer to every a

2. Choosing a who is highest-ranked applicant in e’s preference list who e has not made
an offer to yet

3. Checking if a is paired/unpaired

4. Checking if a prefers e′ to e

2



1.3.1 Data Structure

Each employer’s ranked list of applicants can be stored in a linked list, where the head
represents the highest-rank applicant that the employer has not made an offer yet. When
an employer makes an offer then we can replace the head of list with head.next. These
ranked lists is stored in dictionary where the key is e and the value is the linked list. This
allows (2) to be done in O(1), and it takes O(n2) to build a dictionary of linked lists.

Employers who are unpaired that haven’t made an offer to every applicant can be stored
in a queue. When the algorithm unpairs an employer e we push e to the queue. We pop
any e that has made an offer to all applicants from the queue by checking the linked list
described above. The queue combined with the dictionary allows (1) to be done in O(1).
Building this queue takes O(n).

A dictionary with key a and value e or None can be used to represent the pair (a, e). This
allows (3) to be done in O(1). Building such dictionary takes O(n).

Applicants’ preference of employers is stored as a dictionary of dictionaries. The key of
the outer dictionary is a, the key of the inner dictionary is e, and the value of the inner
dictionary is an integer used to represent the numerical preference. This data structure
allows (4) to be done in O(1) and it takes takes O(n2) to build it.

With the above data structures, which take O(n2) to build, the algorithm takes O(n2)
since there can be at most n2 iterations of the While loop and all operations inside the
loop can be achieved in O(1).

Thus, the time complexity of the algorithm is O(n2).

1.4 Proof of Correctness

Lemma. An applicant remains paired from the moment at which they receive the first offer
and the sequence of employers to which this applicant is paired only gets better.

Proof. From the algorithm execution we see that if the applicant is not paired at the
moment when an employer makes an offer, the applicant pairs up with the employer.
The applicant only switches employers when this applicant prefers the current employer
making the offer to the one they are already paired up with, and never loses employment
once paired.

Proof of Correctness. To prove that this algorithm works, three parts need to be shown.

1. proof of termination

2. proof of perfect matching (every employer is matched with an applicant)

3



3. proof of stability, i.e. there does not exist a situation where an employer e is paired
with an applicant a, but prefer applicant a′ and applicant a′ is paired with employer
e′ but prefer employer e.

Proof of termination:
Pseudocode and time analysis sections show that at most n2 employer-applicant pairings
are made. Since only new pairings are ever offered, because the employer only goes down
their list and never re-makes offers, the algorithm terminates in at most O(n2) iterations
of the while-loop.

Proof of perfect matching (by contradiction):
Suppose there is some employer e who didn’t hire (wasn’t matched). Then there is some
applicant a who didn’t get a job, since there are n employees and n applicants. Since the
algorithm never allows an applicant to go without a job once a first offer is made (see the
above Lemma), this means that a was never offered a job. Since a was never offered a job
by any employer, that means that e never offered a a job. But the algorithm requires every
employer to offer every applicant a job before giving up on matching that employer. This
is a contradiction, so all employers and applicants are matched by the algorithm.

Proof of stability (by contradiction):
Suppose towards contradiction that employer e is paired with applicant a′ but prefers
applicant a, and applicant a is paired with employer e′ but prefers employer e (i.e., there
exists an unstable pair). Either 1) e never offered a a job or 2) e did offer a a job.

In case 1, e never offered a a job. Since e is paired with a′ and e makes employment offers
in preference order, e must prefer a′ to a (i.e., e never got to a when going down their list).
But this contradicts the assumption that e prefers a to a′.

In case 2, since e is not paired with a, a must have rejected e in favor of some other
employer. Since a’s options only get better (by the Lemma), a must prefer e′ to e. But
this contradicts the assumption that a prefers e to e′.

Since both cases end in contradiction, the matching is stable.

4


