
Informed
Search

Chapter 4

Adapted from materials by Tim Finin,
Marie desJardins, and Charles R. Dyer

Artificial Intelligence

Today’s Class

•  Iterative improvement methods
– Hill climbing
– Simulated annealing
– Local beam search

• Genetic algorithms
• Online search

 These approaches start with an initial guess at the
solution and gradually improve until it is one.

Hill climbing on a surface of states

Height Defined by
Evaluation Function

Hill-climbing search
•  Looks one step ahead to determine if any successor is better

than the current state; if there is, move to the best successor.
•  Rule:
 If there exists a successor s for the current state n such that

•  h(s) < h(n) and
•  h(s) ≤ h(t) for all the successors t of n,

 then move from n to s. Otherwise, halt at n.
•  Similar to Greedy search in that it uses h(), but does not allow

backtracking or jumping to an alternative path since it doesn’t
“remember” where it has been.

•  Corresponds to Beam search with a beam width of 1 (i.e., the
maximum size of the nodes list is 1).

•  Not complete since the search will terminate at "local minima,"
"plateaus," and "ridges."

Hill climbing example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6

5

2 3
1 8 4
7 6 5

1 3
 8 4
7 6 5

2

 3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0 h = -4

-5

-4

-4 -3

-2

f (n) = -(number of tiles out of place)

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape
•  Local Maxima: peaks that

aren’t the highest point in the
space

•  Plateaus: the space has a
broad flat region that gives
the search algorithm no
direction (random walk)

•  Ridges: flat like a plateau, but
with drop-offs to the sides;
steps to the North, East, South
and West may go down, but a
step to the NW may go up.

Drawbacks of hill climbing

• Problems: local maxima, plateaus, ridges
• Remedies:

– Random restart: keep restarting the search from
random locations until a goal is found.

– Problem reformulation: reformulate the search
space to eliminate these problematic features

• Some problem spaces are great for hill climbing
and others are terrible.

Example of a local optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

1 2 5
8 7 4

 3

f = -6

f = -7

f = -7

f = 0

start goal

2 5
 7 4
8 6 3

1

6

move
up

move
right

f = -(manhattan distance)

Gradient ascent / descent

•  Gradient descent procedure for finding the argx min f(x)
–  choose initial x0 randomly
–  repeat

•  xi+1 ← xi – η f '(xi)
–  until the sequence x0, x1, …, xi, xi+1 converges

•  Step size η (eta) is small (perhaps 0.1 or 0.05)

Images from http://en.wikipedia.org/wiki/Gradient_descent

Gradient methods vs. Newton’s method

•  A reminder of Newton’s method
from Calculus:
xi+1 ← xi – η f '(xi) / f ''(xi)

•  Newton’s method uses 2nd order
information (the second
derivative, or, curvature) to take
a more direct route to the
minimum.

•  The second-order information is
more expensive to compute, but
converges quicker.

Contour lines of a function
Gradient descent (green)
Newton’s method (red)

Image from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Simulated annealing
•  Simulated annealing (SA) exploits an analogy between the way

in which a metal cools and freezes into a minimum-energy
crystalline structure (the annealing process) and the search for a
minimum [or maximum] in a more general system.

•  SA can avoid becoming trapped at local minima.
•  SA uses a random search that accepts changes that increase

objective function f, as well as some that decrease it.
•  SA uses a control parameter T, which by analogy with the

original application is known as the system “temperature.”
•  T starts out high and gradually decreases toward 0.

Simulated annealing (cont.)
•  A “bad” move from A to B is accepted with a probability

 P(moveA→B) = e(f (B) – f (A)) / T

•  The higher the temperature, the more likely it is that a bad
move can be made.

•  As T tends to zero, this probability tends to zero, and SA
becomes more like hill climbing

•  If T is lowered slowly enough, SA is complete and
admissible.

The simulated annealing algorithm

Local beam search

•  Begin with k random states
•  Generate all successors of these states
•  Keep the k best states

•  Stochastic beam search: Probability of keeping a state is a
function of its heuristic value

Genetic algorithms

•  Similar to stochastic beam search
•  Start with k random states (the initial population)
•  New states are generated by “mutating” a single state or
“reproducing” (combining via crossover) two parent states
(selected according to their fitness)

•  Encoding used for the “genome” of an individual strongly
affects the behavior of the search

•  Genetic algorithms / genetic programming are a large and
active area of research

In-Class Paper Discussion

Stephanie Forrest. (1993).
Genetic algorithms: principles of natural

selection applied to computation.
Science 261 (5123): 872–878.

Class Exercise:
Local Search for Map/Graph Coloring

Online search
•  Interleave computation and action (search some, act some)
•  Exploration: Can’t infer outcomes of actions; must actually perform

them to learn what will happen

•  Competitive ratio = Path cost found* / Path cost that could be found**
* On average, or in an adversarial scenario (worst case)
** If the agent knew the nature of the space, and could use offline search

•  Relatively easy if actions are reversible (ONLINE-DFS-AGENT)
•  LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on

experience
•  More about these issues when we get to the chapters on Logic and

Learning!

Summary: Informed search
•  Best-first search is general search where the minimum-cost nodes (according

to some measure) are expanded first.
•  Greedy search uses minimal estimated cost h(n) to the goal state as measure.

This reduces the search time, but the algorithm is neither complete nor optimal.
•  A* search combines uniform-cost search and greedy search: f (n) = g(n) + h(n).

A* handles state repetitions and h(n) never overestimates.
–  A* is complete and optimal, but space complexity is high.
–  The time complexity depends on the quality of the heuristic function.
–  IDA* and SMA* reduce the memory requirements of A*.

•  Hill-climbing algorithms keep only a single state in memory, but can get stuck
on local optima.

•  Simulated annealing escapes local optima, and is complete and optimal given
a “long enough” cooling schedule.

•  Genetic algorithms can search a large space by modeling biological evolution.
•  Online search algorithms are useful in state spaces with partial/no information.

