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Artificial Intelligence 



Today’s Class 

•  Iterative improvement methods 
– Hill climbing 
– Simulated annealing 
– Local beam search 

• Genetic algorithms 
• Online search 

  These approaches start with an initial guess at the 
solution and gradually improve until it is one. 



Hill climbing on a surface of states 

Height Defined by 
Evaluation Function 



Hill-climbing search 
•  Looks one step ahead to determine if any successor is better 

than the current state; if there is, move to the best successor. 
•  Rule: 
    If there exists a successor s for the current state n such that  

•  h(s) < h(n) and 
•  h(s) ≤ h(t) for all the successors t of n,  

  then move from n to s. Otherwise, halt at n.  
•  Similar to Greedy search in that it uses h(), but does not allow 

backtracking or jumping to an alternative path since it doesn’t 
“remember” where it has been. 

•  Corresponds to Beam search with a beam width of 1 (i.e., the 
maximum size of the nodes list is 1).  

•  Not complete since the search will terminate at "local minima," 
"plateaus," and "ridges."  



Hill climbing example  
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f (n) = -(number of tiles out of place)  



Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html 
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Exploring the Landscape 
•  Local Maxima: peaks that 

aren’t the highest point in the 
space 

•  Plateaus: the space has a 
broad flat region that gives 
the search algorithm no 
direction (random walk) 

•  Ridges: flat like a plateau, but 
with drop-offs to the sides; 
steps to the North, East, South 
and West may go down, but a 
step to the NW may go up. 



Drawbacks of hill climbing 

• Problems: local maxima, plateaus, ridges 
• Remedies:  

– Random restart:  keep restarting the search from 
random locations until a goal is found. 

– Problem reformulation: reformulate the search 
space to eliminate these problematic features 

• Some problem spaces are great for hill climbing 
and others are terrible. 



Example of a local optimum 
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Gradient ascent / descent 

•  Gradient descent procedure for finding the argx min f(x) 
–  choose initial x0 randomly 
–  repeat 

•  xi+1 ← xi – η f '(xi) 
–  until the sequence x0, x1, …, xi, xi+1 converges 

•  Step size η (eta) is small (perhaps 0.1 or 0.05) 

Images from http://en.wikipedia.org/wiki/Gradient_descent 



Gradient methods vs. Newton’s method 

•  A reminder of Newton’s method 
from Calculus: 
xi+1 ← xi – η f '(xi) / f ''(xi)  

•  Newton’s method uses 2nd order 
information (the second 
derivative, or, curvature) to take 
a more direct route to the 
minimum. 

•  The second-order information is 
more expensive to compute, but 
converges quicker. 

Contour lines of a function 
Gradient descent (green) 
Newton’s method (red) 

Image from http://en.wikipedia.org/wiki/Newton's_method_in_optimization 



Simulated annealing 
•  Simulated annealing (SA) exploits an analogy between the way 

in which a metal cools and freezes into a minimum-energy 
crystalline structure (the annealing process) and the search for a 
minimum [or maximum] in a more general system.  

•  SA can avoid becoming trapped at local minima. 
•  SA uses a random search that accepts changes that increase 

objective function f, as well as some that decrease it. 
•  SA uses a control parameter T, which by analogy with the 

original application is known as the system “temperature.” 
•  T starts out high and gradually decreases toward 0. 



Simulated annealing (cont.) 
•  A “bad” move from A to B is accepted with a probability 

 P(moveA→B) = e( f (B) – f (A))  / T 
 

•  The higher the temperature, the more likely it is that a bad 
move can be made. 

•  As T tends to zero, this probability tends to zero, and SA 
becomes more like hill climbing 

•  If T is lowered slowly enough, SA is complete and 
admissible.  



The simulated annealing algorithm  



Local beam search 

•  Begin with k random states 
•  Generate all successors of these states 
•  Keep the k best states 

•  Stochastic beam search: Probability of keeping a state is a 
function of its heuristic value 



Genetic algorithms 

•  Similar to stochastic beam search 
•  Start with k random states (the initial population) 
•  New states are generated by “mutating” a single state or 
“reproducing” (combining via crossover) two parent states 
(selected according to their fitness) 

•  Encoding used for the “genome” of an individual strongly 
affects the behavior of the search 

•  Genetic algorithms / genetic programming are a large and 
active area of research 



In-Class Paper Discussion 
 

Stephanie Forrest. (1993). 
Genetic algorithms: principles of natural 

selection applied to computation. 
Science 261 (5123): 872–878.  



Class Exercise: 
Local Search for Map/Graph Coloring 



Online search 
•  Interleave computation and action (search some, act some) 
•  Exploration: Can’t infer outcomes of actions; must actually perform 

them to learn what will happen 

•  Competitive ratio = Path cost found* / Path cost that could be found**  
* On average, or in an adversarial scenario (worst case) 
** If the agent knew the nature of the space, and could use offline search 

•  Relatively easy if actions are reversible (ONLINE-DFS-AGENT) 
•  LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on 

experience 
•  More about these issues when we get to the chapters on Logic and 

Learning! 



Summary: Informed search 
•  Best-first search is general search where the minimum-cost nodes (according 

to some measure) are expanded first.  
•  Greedy search uses minimal estimated cost h(n) to the goal state as measure. 

This reduces the search time, but the algorithm is neither complete nor optimal.  
•  A* search combines uniform-cost search and greedy search: f (n) = g(n) + h(n). 

A* handles state repetitions and h(n) never overestimates.  
–  A* is complete and optimal, but space complexity is high. 
–  The time complexity depends on the quality of the heuristic function.  
–  IDA* and SMA* reduce the memory requirements of A*.  

•  Hill-climbing algorithms keep only a single state in memory, but can get stuck 
on local optima.  

•  Simulated annealing escapes local optima, and is complete and optimal given 
a “long enough” cooling schedule.  

•  Genetic algorithms can search a large space by modeling biological evolution. 
•  Online search algorithms are useful in state spaces with partial/no information. 


