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State of the art 

•  How good are computer game players? 
–  Chess:  

•  Deep Blue beat Gary Kasparov in 1997 
•  Garry Kasparav vs. Deep Junior (Feb 2003): tie!   
•  Kasparov vs. X3D Fritz (November 2003): tie!  

–  Checkers: Chinook (an AI program with a very large endgame database) 
is the world champion.  Checkers has been solved exactly – it’s a draw! 

–  Go: Computer players are decent, at best 
–  Bridge: “Expert” computer players exist (but no world champions yet!) 

•  Good place to learn more: http://www.cs.ualberta.ca/~games/ 



Chinook 
•  Chinook is the World Man-Machine Checkers 

Champion, developed by researchers at the University 
of Alberta. 

•  It earned this title by competing in human tournaments, 
winning the right to play for the (human) world 
championship, and eventually defeating the best players 
in the world.  

•  Visit http://www.cs.ualberta.ca/~chinook/  to play a 
version of Chinook over the Internet. 

•  The developers have fully analyzed the game of 
checkers and have the complete game tree for it. 
–  Perfect play on both sides results in a tie. 

•  “One Jump Ahead: Challenging Human Supremacy in 
Checkers” Jonathan Schaeffer, University of Alberta  
(496 pages, Springer. $34.95, 1998).  



Ratings of human and computer chess champions 





Typical case 
• 2-person game 
• Players alternate moves  
• Zero-sum: one player’s loss is the other’s gain 
• Perfect information: both players have access to 

complete information about the state of the game.  
No information is hidden from either player. 

• No chance (e.g., using dice) involved  
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello 
• Not: Bridge,  Solitaire, Backgammon, ... 



How to play a game 
• A way to play such a game is to: 

– Consider all the legal moves you can make 
– Compute the new position resulting from each move 
– Evaluate each resulting position and determine which is 

best 
– Make that move 
– Wait for your opponent to move and repeat 

• Key problems are: 
– Representing the “board” 
– Generating all legal next boards 
– Evaluating a position 



Evaluation function 
•  Evaluation function or static evaluator is used to evaluate 

the “goodness” of a game position. 
–  Contrast with heuristic search where the evaluation function was a 

non-negative estimate of the cost from the start node to a goal and 
passing through the given node 

•  The zero-sum assumption allows us to use a single 
evaluation function to describe the goodness of a board with 
respect to both players.  
–  f(n)  >> 0: position n good for me and bad for you 
–  f(n) << 0:  position n bad for me and good for you 
–  f(n) near 0: position n is a neutral position 
–  f(n) = +infinity: win for  me 
–  f(n) = -infinity: win for you   



Evaluation function examples 
•  Example of an evaluation function for Tic-Tac-Toe:  

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]  
where a 3-length is a complete row, column, or diagonal 

•  Alan Turing’s function for chess 
–  f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s 

pieces and b(n) = sum of black’s 

•  Most evaluation functions are specified as a weighted sum of 
position features: 
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)  

•  Example features for chess are piece count,  piece placement, 
squares controlled, etc.  

•  Deep Blue had over 8000 features in its evaluation function 



Game trees 

•  Problem spaces for typical games are                                         
represented as trees 

•  Root node represents the current  
board configuration; player must decide                                                     
the best single move to make next 

•  Static evaluator function rates a board                                            
position. f(board) = real number with 
f>0 “white” (me), f<0 for black (you) 

•  Arcs represent the possible legal moves for a player  
•  If it is my turn to move, then the root is labeled a "MAX" node; 

otherwise it is labeled a "MIN" node, indicating my opponent's turn.  
•  Each level of the tree has nodes that are all MAX or all MIN; nodes at 

level i are of the opposite kind from those at level i+1  



Minimax procedure 
•  Create start node as a MAX node  with current board 

configuration  
•  Expand nodes down to some depth (a.k.a. ply) of 

lookahead in the game 
•  Apply the evaluation function at each of the leaf nodes  
•  “Back up” values for each of the non-leaf nodes until a 

value is computed for the root node 
–  At MIN nodes, the backed-up value is the minimum of the values 

associated with its children.  
–  At MAX nodes, the backed-up value is the maximum of the values 

associated with its children.  

•  Pick the operator associated with the child node whose 
backed-up value determined the value at the root  



Minimax Algorithm 
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Partial Game Tree for Tic-Tac-Toe 

•  f(n) = +1 if the position is a 
win for X. 

•  f(n) = -1 if the position is a 
win for O. 

•  f(n) = 0 if the position is a 
draw. 



Minimax Tree 
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Alpha-beta pruning 

•  We can improve on the performance of the minimax 
algorithm through alpha-beta pruning 

•  Basic idea: “If you have an idea that is surely bad, don't 
take the time to see how truly awful it is.” -- Pat Winston  
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Alpha-beta pruning 

•  Traverse the search tree in depth-first order  
•  At each MAX node n, alpha(n) =  maximum value found so 

far 
•  At each MIN node n, beta(n) =  minimum value found so far 

–  Note: The alpha values start at -infinity and only increase, while beta 
values start at +infinity and only decrease.  

•  Beta cutoff: Given a MAX node n, cut off the search below n 
(i.e., don’t generate or examine any more of n’s children) if 
alpha(n) >= beta(i) for some MIN node ancestor i of n.  

•  Alpha cutoff: stop searching below MIN node n if beta(n) <= 
alpha(i) for some MAX node ancestor i of n.  



Alpha-beta example 
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Alpha-beta algorithm 
function MAX-VALUE (state, α, β) 
    ;; α = best MAX so far; β = best MIN 
if TERMINAL-TEST (state) then return UTILITY(state) 
v := -∞ 
for each s in SUCCESSORS (state) do 
    v := MAX (v, MIN-VALUE (s, α, β)) 
    if v >= β then return v 
    α := MAX (α, v) 
end 
return v 
 
function MIN-VALUE (state, α, β) 
if TERMINAL-TEST (state) then return UTILITY(state) 
v := ∞ 
for each s in SUCCESSORS (state) do 
    v := MIN (v, MAX-VALUE (s, α, β)) 
    if v <= α then return v 
    β := MIN (β, v) 
end 
return v 



Effectiveness of alpha-beta 
•  Alpha-beta is guaranteed to compute the same value for the 

root node as computed by minimax, with less or equal 
computation 

•  Worst case:  no pruning, examining bd leaf nodes, where 
each node has b children and a d-ply search is performed  

•  Best case: examine only (2b)d/2 leaf nodes.  
– Result is you can search twice as deep as minimax!  

•  Best case is when each player’s best move is the first 
alternative generated   

•  In Deep Blue, they found empirically that alpha-beta 
pruning meant that the average branching factor at each 
node was about 6 instead of about 35! 



Games of chance 
•  Backgammon is a two-player 
game with uncertainty. 

• Players roll dice to determine 
what moves to make. 

• White has just rolled 5 and 6 
and has four legal moves: 

•  5-10, 5-11 
• 5-11, 19-24 
• 5-10, 10-16 
• 5-11, 11-16 

• Such games are good for 
exploring decision making in 
adversarial problems involving 
skill and luck. 



Game trees with chance nodes 
• Chance nodes (shown as circles) 
represent random events 

• For a random event with N 
outcomes, each chance node has 
N distinct children; a probability 
is associated with each 

• (For 2 dice, there are 21 distinct 
outcomes) 

• Use minimax to compute values 
for MAX and MIN nodes 

• Use  expected values for chance 
nodes 

• For chance nodes over a max node, 
as in C: 

expectimax(C) = ∑i(P(di) * maxvalue(i)) 

• For chance nodes over a min node: 
expectimin(C) = ∑i(P(di) * minvalue(i)) 

Max 
Rolls 

Min 
Rolls 



Meaning of the evaluation function 

•  Dealing with probabilities and expected values means we have to be careful 
about the “meaning” of values returned by the static evaluator. 

•  Note that a “relative-order preserving” change of the values would not change 
the decision of minimax, but could change the decision with chance nodes. 

•  Linear transformations are OK 

A1 is best 
move 

A2 is best 
move 

2 outcomes 
with prob {.
9, .1} 


