Artificial Intelligence

Adversarial Search
(Game Playing)

Chapter 5

Adapted from materials by Tim Finin,
Marie desJardins, and Charles R. Dyer

Outline

* Game playing
— State of the art and resources

— Framework
* Game trees
— Minimax
— Alpha-beta pruning
— Adding randomness

State of the art

 How good are computer game players?

— Chess:

» Deep Blue beat Gary Kasparov in 1997
* Garry Kasparav vs. Deep Junior (Feb 2003): tie!
» Kasparov vs. X3D Fritz (November 2003): tie!

— Checkers: Chinook (an Al program with a very large endgame database)
is the world champion. Checkers has been solved exactly —it’ s a draw!

— Go: Computer players are decent, at best
— Bridge: “Expert” computer players exist (but no world champions yet!)

» Good place to learn more: http://www.cs.ualberta.ca/~games/

The board set for play

Chinook

Chinook 1s the World Man-Machine Checkers
Champion, developed by researchers at the University
of Alberta.

It earned this title by competing in human tournaments,
winning the right to play for the (human) world
championship, and eventually defeating the best players
in the world.

Visit http://www.cs.ualberta.ca/~chinook/ to play a
version of Chinook over the Internet.

The developers have fully analyzed the game of
checkers and have the complete game tree for it.

— Perfect play on both sides results in a tie.
“One Jump Ahead: Challenging Human Supremacy in

Checkers” Jonathan Schaeffer, University of Alberta
(496 pages, Springer. $34.95, 1998).

Ratings of human and computer chess champions

(op9z xoidde) z oy daaqg

[S052] Aotedsey

(1552) mnoqy daaq

[00pZ) ToatH

[Opiz] modedsesy |

(00zZ) *meg

[ShazIoneoy |
[Soiz]aodieyy |

006T) 9'p 55370

[GeielAoqosty |

[0sbz] qsseds |

O (00ST) 0°€ 553D

O (00PT] ¥ H 98T

[E0cz] ussouiag

197 92) oL og

:

:

g

L)

o

1990

1985

1980

1975

1970

1965

1960

?Iv Kasparov vs. Deep Blue: The Rematch - Netscape
File Edit

View Go Communicator Help

w‘." Bookmarks 4 LUC&tiOﬂI|http:,a’,"w;v.chess.ibm.com,’homejhtml,’b.html

game6: may 11 @ 3:00pm EDT | 19:00 GMT

eep Blue Wm% 1

With'a" 5'ramat|c victory in Game 6?
Deep Blue won its six-game rematch

Commentary

George Phimpion on chess | Kasparov, and the
limitations of compters

¥ Read the article

Club Kasparov
Visit the virtaal home of the world's greatest
chess player.

KEER ARON,

o Community

" During the rematch, more than 20 000 people
fromm 120 cowrdries jomed the compromity to
S talk shout the match,

|—-Home)Thematch » The players B b The technology

with Champion Garry Kasparov © &

the re'nch

[= OVERVIEW

b EVENT COVERAGE]

) MATCH NEWS)

» MAIN STORIES]

Commentary
Vishwanathan Anand on the legacy of
Kasparow ws. Deep Bhae

¥ Read the article

Guest essays

Thoughts on chess , computers | and what it all
means

¥ Read the essays...

Clips from the remaich
Video footage from the ganes
¥ Highlights from the games

F ¥ Press room ﬂ ¥ Chess reference ﬂ ¥ Feedback ﬂ ¥ Site guide |

|Document: Done

= |

RN

Typical case

e 2-person game
* Players alternate moves
e Zero-sum: one player’ s loss is the other’ s gain

» Perfect information: both players have access to
complete information about the state of the game.
No information is hidden from either player.

* No chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

* Not: Bridge, Solitaire, Backgammon, ...

How to play a game

* A way to play such a game 1s to:
— Consider all the legal moves you can make
— Compute the new position resulting from each move

— Evaluate each resulting position and determine which 1s
best

— Make that move
— Wait for your opponent to move and repeat

» Key problems are:
— Representing the “board”
— Generating all legal next boards
— Evaluating a position

Evaluation function

« Evaluation function or static evaluator 1s used to evaluate
the “goodness” of a game position.

— Contrast with heuristic search where the evaluation function was a
non-negative estimate of the cost from the start node to a goal and
passing through the given node

* The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.

— f(n) >> 0: position n good for me and bad for you

— f(n) << 0: position n bad for me and good for you

— f(n) near 0: position n 1s a neutral position

— f(n) = +infinity: win for me

— f(n) = -infinity: win for you

Evaluation function examples

« Example of an evaluation function for Tic-Tac-Toe:
f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length 1s a complete row, column, or diagonal

e Alan Turing s function for chess
— f(n) = w(n)/b(n) where w(n) = sum of the point value of white’ s
pieces and b(n) = sum of black’ s
* Most evaluation functions are specified as a weighted sum of
position features:
f(n) = w,*feat,(n) + w,*feat,(n) + ... + w_*feat, (n)
» Example features for chess are piece count, piece placement,
squares controlled, etc.

» Deep Blue had over 8000 features in its evaluation function

Game trees

MAX (X)
Problem spaces for typical games are e * “ x x x
represented as trees S ’ ’
Root node represents the current weeo LEH FEH o
board configuration; player must decide . Oﬁ
the best single move to make next S HH
Static evaluator function rates a board \
position. f(board) = real number with o c|) . Xlx _‘__
>0 “white” (me), f<0 for black (you) ™™™ H3P 2 i

Wkility 0

Arcs represent the possible legal moves for a player

If it 1s my turn to move, then the root 1s labeled a "MAX" node;
otherwise it is labeled a "MIN" node, indicating my opponent's turn.

Each level of the tree has nodes that are all MAX or all MIN; nodes at
level 1 are of the opposite kind from those at level 1+1

Minimax procedure

* Create start node as a MAX node with current board
configuration

* Expand nodes down to some depth (a.k.a. ply) of
lookahead in the game

» Apply the evaluation function at each of the leaf nodes

« “Back up” values for each of the non-leaf nodes until a
value 1s computed for the root node

— At MIN nodes, the backed-up value is the minimum of the values
associated with its children.

— At MAX nodes, the backed-up value is the maximum of the values
associated with its children.
 Pick the operator associated with the child node whose
backed-up value determined the value at the root

Minimax Algorithm

2

KRR KOR

2: 71 8 2 71 8 y 71 8
This is the move ﬂ 2

selected by minimax et a

® v S.2i7 1 8

Partial Game Tree for Tic-Tac-Toe

MAX (X)

MIN (O)

MAX (X)

MIN{(O)

TERMINAL

WRility

%R\\

X

X X X

3=k

o<l —:

o ko —:
O [> e

- PDOP
¢ (O P

—

+

* f(n) =+1 1f the position 1s a
win for X.

 f(n) = -1 1f the position 1s a
win for O.

 f(n) = 0 1f the position 1s a
draw.

Minimax Tree

Pl A& X

Pl M

3
\ value computed
{ value by minimax

Alpha-beta pruning

 We can improve on the performance of the minimax
algorithm through alpha-beta pruning

* Basic idea: “If you have an idea that is surely bad, don't
take the time to see how truly awful it is. ” -- Pat Winston

MAX 5
 We don t need to compute

the value at this node.

» No matter what it is, it can’ t
affect the value of the root

MAX node.

Alpha-beta pruning

e Traverse the search tree in depth-first order

e At each MAX node n, alpha(n) = maximum value found so
far

e At each MIN node n, beta(n) = minimum value found so far

— Note: The alpha values start at -infinity and only increase, while beta
values start at +infinity and only decrease.

* Beta cutoff: Given a MAX node n, cut off the search below n
(i.e., don’ t generate or examine any more of n’ s children) if
alpha(n) >= beta(1) for some MIN node ancestor 1 of n.

 Alpha cutoff: stop searching below MIN node n 1f beta(n) <=
alpha(1) for some MAX node ancestor 1 of n.

Alpha-beta example
MAX A 3

A 7 Z K\

Alpha-beta algorithm

function MAX-VALUE (state, o, PB)
;7 o = best MAX so far; p = best MIN
if TERMINAL-TEST (state) then return UTILITY (state)
vV oi= —o
for each s in SUCCESSORS (state) do

v := MAX (v, MIN-VALUE (s, o, B))
1f v >= [then return v
o := MAX (o, V)

end
return v

function MIN-VALUE (state, o,)

if TERMINAL-TEST (state) then return UTILITY (state)
Vo oi= o

for each s in SUCCESSORS (state) do

v := MIN (v, MAX-VALUE (s, o, B))
if v <= o then return v
B := MIN (B, V)

end
return v

Effectiveness of alpha-beta

» Alpha-beta 1s guaranteed to compute the same value for the
root node as computed by minimax, with less or equal
computation

« Worst case: no pruning, examining b¢ leaf nodes, where
each node has b children and a d-ply search 1s performed

 Best case: examine only (2b)¥? leaf nodes.
— Result 1s you can search twice as deep as minimax!

* Best case is when each player’ s best move is the first
alternative generated

 In Deep Blue, they found empirically that alpha-beta
pruning meant that the average branching factor at each
node was about 6 instead of about 35!

Games of chance

» Backgammon is a two-player
game with uncertainty.

*Players roll dice to determine
what moves to make.

*White has just rolled 5 and 6

and has four legal moves:
« 5-10, 5-11
*5-11, 19-24
*5-10, 10-16
*5-11, 11-16

*Such games are good for
exploring decision making in

adversarial problems involving
skill and luck.

25

12

10 11

12

rﬂ

‘» <

OJIIIL.

>« 4.» 4‘

ry

0 .
48|10 ¢

L
IIIIIIII

.;::.« Wl

24 23 22 21 20

[~ ﬂ‘r #lr N7
> <‘> 4‘» ‘
I-l'l' '

!

1 ‘
1IN

I

18 17 16 15 14

13

Game trees with chance nodes

* Chance nodes (shown as circles)
represent random events

* For a random event with N
outcomes, each chance node has MAX ay
N distinct children; a probability
1s associated with each

DICE Qo O M) .. O O
« (For 2 dice, there are 21 distinct & T Rolls 7 N
outcomes) 1136 s SN
 Use minimax to compute values MIN \/ Y \/
for MAX and MIN nodes
Use expected values for chance - Max (@) ®
nodes Rolls :
» For chance nodes over a max node, 1138 1118 5.5 Y-
asin C: MAX A A A

2
“es

expectimax(C) = Zi(P(di) * maxvalue(i))

» For chance nodes over a min node:
TERMINAL 2 1 1 1 1
expectimin(C) = >;(P(d;) * minvalue(i))

Meaning of the evaluation function

MAS Al is best
move

A2 is best
move

2 outcomeszl -
DICE with prob {. '
9 .1
} 9
MIN 20

2 2 3 3 1 1 4 4 20 20 30 30 1 1 400 400

» Dealing with probabilities and expected values means we have to be careful
about the “meaning” of values returned by the static evaluator.

« Note that a “relative-order preserving” change of the values would not change
the decision of minimax, but could change the decision with chance nodes.

e Linear transformations are OK

