Bayesian Reasoning

Adapted from slides by Tim Finin and Marie desJardins.

Outline

- Probability theory
- Bayesian inference
 - From the joint distribution
 - Using independence/factoring
 - From sources of evidence

Abduction

- Abduction is a reasoning process that tries to form plausible explanations for abnormal observations
 - Abduction is distinctly different from deduction and induction
 - Abduction is inherently uncertain
- Uncertainty is an important issue in abductive reasoning
- Some major formalisms for representing and reasoning about uncertainty
 - Mycin's certainty factors (an early representative)
 - Probability theory (esp. Bayesian belief networks)
 - Dempster-Shafer theory
 - Fuzzy logic
 - Truth maintenance systems
 - Nonmonotonic reasoning

Abduction

- **Definition** (Encyclopedia Britannica): reasoning that derives an explanatory hypothesis from a given set of facts
 - The inference result is a hypothesis that, if true, could explain the occurrence of the given facts

• Examples

- Dendral, an expert system to construct 3D structure of chemical compounds
 - Fact: mass spectrometer data of the compound and its chemical formula
 - KB: chemistry, esp. strength of different types of bounds
 - Reasoning: form a hypothetical 3D structure that satisfies the chemical formula, and that would most likely produce the given mass spectrum

Abduction examples (cont.)

– Medical diagnosis

- Facts: symptoms, lab test results, and other observed findings (called manifestations)
- KB: causal associations between diseases and manifestations
- Reasoning: one or more diseases whose presence would causally explain the occurrence of the given manifestations
- Many other reasoning processes (e.g., word sense disambiguation in natural language process, image understanding, criminal investigation) can also been seen as abductive reasoning

Comparing abduction, deduction, and induction

Deduction: major premise: minor premise: conclusion:

All balls in the box are black These balls are from the box These balls are black

$\begin{array}{l} \mathbf{A} \Longrightarrow \mathbf{B} \\ \mathbf{A} \end{array}$
B

Abduction: rule:	All balls in the box are black	$A \Rightarrow B$
observation:	These balls are black	D
explanation:	These balls are from the box	Possibly A

Induction:	case:	These balls are from the box	
	observation:	These balls are black	
	hypothesized rule:	All ball in the box are black	Po : A =

'henever then **B** ossibly => B

Deduction reasons from causes to effects **Abduction** reasons from effects to causes **Induction** reasons from specific cases to general rules

Characteristics of abductive reasoning

- "Conclusions" are **hypotheses**, not theorems (may be false *even if* rules and facts are true)
 - E.g., misdiagnosis in medicine
- There may be multiple plausible hypotheses
 - Given rules A => B and C => B, and fact B, both A and C are plausible hypotheses
 - Abduction is inherently uncertain
 - Hypotheses can be ranked by their plausibility (if it can be determined)

Characteristics of abductive reasoning (cont.)

- Reasoning is often a hypothesize-and-test cycle
 - **Hypothesize**: Postulate possible hypotheses, any of which would explain the given facts (or at least most of the important facts)
 - **Test**: Test the plausibility of all or some of these hypotheses
 - One way to test a hypothesis H is to ask whether something that is currently unknown-but can be predicted from H-is actually true
 - If we also know A => D and C => E, then ask if D and E are true
 - If D is true and E is false, then hypothesis A becomes more plausible (support for A is increased; support for C is decreased)

Characteristics of abductive reasoning (cont.)

- Reasoning is **non-monotonic**
 - That is, the plausibility of hypotheses can increase/ decrease as new facts are collected
 - In contrast, deductive inference is monotonic: it never change a sentence's truth value, once known
 - In abductive (and inductive) reasoning, some hypotheses may be discarded, and new ones formed, when new observations are made

Sources of uncertainty

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision making with uncertainty

• Rational behavior:

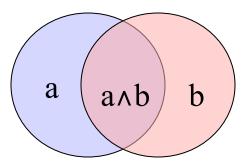
- For each possible action, identify the possible outcomes
- Compute the **probability** of each outcome
- Compute the **utility** of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select the action with the highest expected utility (principle of Maximum Expected Utility)

Bayesian reasoning

- Probability theory
- Bayesian inference
 - Use probability theory and information about independence
 - Reason diagnostically (from evidence (effects) to conclusions (causes)) or causally (from causes to effects)
- Bayesian networks
 - Compact representation of probability distribution over a set of propositional random variables
 - Take advantage of independence relationships

Why probabilities anyway?

- Kolmogorov showed that three simple axioms lead to the rules of probability theory
 - De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
- 1. All probabilities are between 0 and 1:
 - $0 \le P(a) \le 1$
- 2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:
 - P(true) = 1; P(false) = 0
- 3. The probability of a disjunction is given by:
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$



Probability theory

- Random variables
 - Domain
- Atomic event: complete specification of state
- **Prior probability**: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
 - Boolean (like these), discrete, continuous
- (Alarm=True ^ Burglary=True ^ Earthquake=False) or equivalently (alarm ^ burglary ^ ¬earthquake)
- P(Burglary) = 0.1
- P(Alarm, Burglary) =

	alarm	−alarm
burglary	0.09	0.01
¬burglary	0.1	0.8

Probability theory (cont.)

- **Conditional probability**: probability of effect given causes
- Computing conditional probs:
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B \mid a) P(a)$ (conditioning)

- P(burglary | alarm) = 0.47 P(alarm | burglary) = 0.9
- P(burglary | alarm) = P(burglary \land alarm) / P(alarm) = 0.09 / 0.19 = 0.47
- P(burglary \[alarm) =
 P(burglary | alarm) P(alarm) =
 0.47 * 0.19 = 0.09
- P(alarm) = $P(alarm \land burglary) +$ $P(alarm \land \neg burglary) =$ 0.09 + 0.1 = 0.19

Example: Inference from the joint

	alarm		¬alarm	
	earthquake	−earthquake	earthquake	¬earthquake
burglary	0.01	0.08	0.001	0.009
¬burglary	0.01	0.09	0.01	0.79

 $\begin{aligned} P(\text{Burglary} \mid \text{alarm}) &= \alpha \ P(\text{Burglary, alarm}) \\ &= \alpha \ [P(\text{Burglary, alarm, earthquake}) + P(\text{Burglary, alarm, }\neg\text{earthquake}) \\ &= \alpha \ [\ (0.01, \ 0.01) + (0.08, \ 0.09) \] \\ &= \alpha \ [\ (0.09, \ 0.1) \] \end{aligned}$

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(0.09+0.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = 0.109$ Quizlet: how can you verify this?)

P(burglary | alarm) = 0.09 * 5.26 = 0.474

 $P(\neg burglary | alarm) = 0.1 * 5.26 = 0.526$

Exercise: Inference from the joint

p(smart ∧ study ∧ prep)	smart		¬ smart	
	study	¬study	study	¬study
prepared	0.432	0.16	0.084	0.008
¬prepared	0.048	0.16	0.036	0.072

- Queries:
 - What is the prior probability of *smart*?
 - What is the prior probability of *study*?
 - What is the conditional probability of *prepared*, given *study* and *smart*?
- Save these answers for next time! ③

Independence

• When two sets of propositions do not affect each others' probabilities, we call them **independent**, and can easily compute their joint and conditional probability:

- Independent (A, B) \leftrightarrow P(A \land B) = P(A) P(B), P(A | B) = P(A)

- For example, {moon-phase, light-level} might be independent of {burglary, alarm, earthquake}
 - Then again, it might not: Burglars might be more likely to burglarize houses when there's a new moon (and hence little light)
 - But if we know the light level, the moon phase doesn't affect whether we are burglarized
 - Once we' re burglarized, light level doesn' t affect whether the alarm goes off
- We need a more complex notion of independence, and methods for reasoning about these kinds of relationships

Exercise: Independence

p(smart ∧ study ∧ prep)	smart		¬ smart	
	study	¬study	study	¬study
prepared	0.432	0.16	0.084	0.008
¬prepared	0.048	0.16	0.036	0.072

- Queries:
 - Is *smart* independent of *study*?
 - Is *prepared* independent of *study*?

Conditional independence

- Absolute independence:
 - A and B are **independent** if and only if $P(A \land B) = P(A) P(B)$; equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are conditionally independent given C if and only if
 P(A \wedge B | C) = P(A | C) P(B | C)
- This lets us decompose the joint distribution:

 $- P(A \land B \land C) = P(A \mid C) P(B \mid C) P(C)$

- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint probability distribution

Exercise: Conditional independence

p(smart ^ study ^ prep)	smart		¬ smart	
	study	¬study	study	¬study
prepared	0.432	0.16	0.084	0.008
¬prepared	0.048	0.16	0.036	0.072

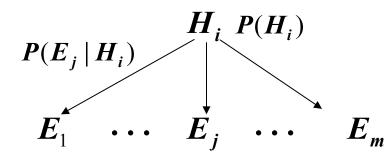
- Queries:
 - Is *smart* conditionally independent of *prepared*, given study?
 - Is study conditionally independent of prepared, given smart?

Bayes's rule

- Bayes' s rule is derived from the product rule:
 P(Y | X) = P(X | Y) P(Y) / P(X)
- Often useful for diagnosis:
 - If X are (observed) effects and Y are (hidden) causes,
 - We may have a model for how causes lead to effects (P(X | Y))
 - We may also have prior beliefs (based on experience) about the frequency of occurrence of effects (P(Y))
 - Which allows us to reason abductively from effects to causes (P(Y | X)).

Bayesian inference

• In the setting of diagnostic/evidential reasoning



hypotheses

evidence/manifestations

- Know prior probability of hypothesis conditional probability
- Want to compute the *posterior probability*
- Bayes' theorem (formula 1):

 $P(H_i | E_j) = P(H_i)P(E_j | H_i) / P(E_j)$

 $P(H_i)$ $P(E_j | H_i)$ $P(H_i | E_j)$

Simple Bayesian diagnostic reasoning

- Knowledge base:
 - Evidence / manifestations: $E_1, ..., E_m$
 - Hypotheses / disorders: $H_1, ..., H_n$
 - E_j and H_i are **binary**; hypotheses are **mutually exclusive** (nonoverlapping) and **exhaustive** (cover all possible cases)
 - Conditional probabilities: $P(E_j | H_i), i = 1, ..., n; j = 1, ..., m$
- Cases (evidence for a particular instance): E₁, ..., E_m
- Goal: Find the hypothesis H_i with the highest posterior - Max_i P(H_i | E₁, ..., E_m)

Bayesian diagnostic reasoning II

• Bayes' rule says that

 $- P(H_i | E_1, ..., E_m) = P(E_1, ..., E_m | H_i) P(H_i) / P(E_1, ..., E_m)$

- Assume each piece of evidence E_i is conditionally independent of the others, *given* a hypothesis H_i, then:
 P(E₁, ..., E_m | H_i) = ∏^m_{j=1} P(E_j | H_i)
- If we only care about relative probabilities for the H_i, then we have:

 $- P(H_i | E_1, ..., E_m) = \alpha P(H_i) \prod_{j=1}^m P(E_j | H_i)$

Limitations of simple Bayesian inference

- Cannot easily handle multi-fault situation, nor cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M_1 and M_2
- Consider a composite hypothesis $H_1 \wedge H_2$, where H_1 and H_2 are independent. What is the relative posterior?

$$- P(H_1 \land H_2 | E_1, ..., E_m) = \alpha P(E_1, ..., E_m | H_1 \land H_2) P(H_1 \land H_2) = \alpha P(E_1, ..., E_m | H_1 \land H_2) P(H_1) P(H_2) = \alpha \prod_{j=1}^m P(E_j | H_1 \land H_2) P(H_1) P(H_2)$$

• How do we compute $P(E_i | H_1 \land H_2)$??

Limitations of simple Bayesian inference II

• Assume H_1 and H_2 are independent, given $E_1, ..., E_m$?

 $- P(H_1 \land H_2 | E_1, ..., E_m) = P(H_1 | E_1, ..., E_m) P(H_2 | E_1, ..., E_m)$

- This is a very unreasonable assumption
 - Earthquake and Burglar are independent, but not given Alarm:
 - P(burglar | alarm, earthquake) << P(burglar | alarm)
- Another limitation is that simple application of Bayes' s rule doesn' t allow us to handle causal chaining:
 - A: this year's weather; B: cotton production; C: next year's cotton price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - $P(C \mid B, A) = P(C \mid B)$
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next time: conditional independence and Bayesian networks!