
Recap: Reasoning Over Time 

• Markov models 
 
 

 
 
• Hidden Markov models 
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Passage of Time 
• Assume we have current belief P(X | evidence to date) 

 
 

• Then, after one time step passes: 
 
 

• Or, compactly: 
 
 

• Basic idea: beliefs get “pushed” through the transitions 
– With the “B” notation, we have to be careful about what time step t the 

belief is about, and what evidence it includes 

X2 X1 



Example: Passage of Time 

• As time passes, uncertainty “accumulates” 

T = 1 T = 2 T = 5 

Transition model: ghosts usually go clockwise 



Example: Observation 

• As we get observations, beliefs get reweighted, 
uncertainty “decreases” 

Before observation After observation 



Example HMM 

 



The Forward Algorithm 
• We are given evidence at each time and want to know 

 
 

• We can derive the following updates 
 
 
 

 

We can normalize 
as we go if we want 

to have P(x|e) at 
each time step, or 

just once at the 
end… 



Online Belief Updates 
• Every time step, we start with current P(X | evidence) 
• We update for time: 

 
 
 

• We update for evidence: 
 
 
 
 

• The forward algorithm does both at once (and doesn’t normalize) 
• Problem: space is |X| and time is |X|2 per time step 
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• Voice Recognition: 
http://www.youtube.com/watch?v=d9gDcHBmr3I 

http://www.youtube.com/watch?v=d9gDcHBmr3I�


Filtering 
•  

Elapse time: compute P( Xt | e1:t-1 ) 
 
 
 
Observe: compute P( Xt | e1:t ) 
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Particle Filtering 
• Sometimes |X| is too big to use exact 

inference 
– |X| may be too big to even store B(X) 
– E.g. X is continuous 
– |X|2 may be too big to do updates 

 
• Solution: approximate inference 

– Track samples of X, not all values 
– Samples are called particles 
– Time per step is linear in the number of 

samples 
– But: number needed may be large 
– In memory: list of particles, not states 

 
• This is how robot localization works 

in practice 
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Representation: Particles 
• Our representation of P(X) is now a 

list of N particles (samples) 
– Generally, N << |X| 
– Storing map from X to counts would 

defeat the point 
 

• P(x) approximated by number of 
particles with value x 
– So, many x will have P(x) = 0!  
– More particles, more accuracy 

 

• For now, all particles have a 
weight of 1 
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Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (2,1) 
    (3,3) 
    (3,3) 
    (2,1) 



Particle Filtering: Elapse Time 
• Each particle is moved by sampling its 

next position from the transition model 
 
 
 

– This is like prior sampling – samples’ 
frequencies reflect the transition probs 

– Here, most samples move clockwise, but some 
move in another direction or stay in place 
 

• This captures the passage of time 
– If we have enough samples, close to the exact 

values before and after (consistent) 
 



Particle Filtering: Observe 
• Slightly trickier: 

– Don’t do rejection sampling (why not?) 
– We don’t sample the observation, we fix it 
– This is similar to likelihood weighting, so we 

downweight our samples based on the 
evidence 
 

 
 

 
– Note that, as before, the probabilities don’t 

sum to one, since most have been 
downweighted (in fact they sum to an 
approximation of P(e)) 



Particle Filtering: Resample 
• Rather than tracking 

weighted samples, we 
resample 
 

• N times, we choose 
from our weighted 
sample distribution (i.e. 
draw with replacement) 
 

• This is analogous to 
renormalizing the 
distribution 
 

• Now the update is 
complete for this time 
step, continue with the 
next one 

Old Particles: 
    (3,3) w=0.1 
    (2,1) w=0.9 
    (2,1) w=0.9   
    (3,1) w=0.4 
    (3,2) w=0.3 
    (2,2) w=0.4 
    (1,1) w=0.4 
    (3,1) w=0.4 
    (2,1) w=0.9 
    (3,2) w=0.3 

New Particles: 
    (2,1) w=1 
    (2,1) w=1 
    (2,1) w=1   
    (3,2) w=1 
    (2,2) w=1 
    (2,1) w=1 
    (1,1) w=1 
    (3,1) w=1 
    (2,1) w=1 
    (1,1) w=1 



Robot Localization 
• In robot localization: 

– We know the map, but not the robot’s position 
– Observations may be vectors of range finder readings 
– State space and readings are typically continuous (works basically like 

a very fine grid) and so we cannot store B(X) 
– Particle filtering is often used 

 

http://www.youtube.com/watch?v=kq
JpuMNHF_g&feature=related 

http://www.youtube.com/watch?
v=INLja6Ya3Ig&feature=related 

http://www.youtube.com/watch?v=kqJpuMNHF_g&feature=related�
http://www.youtube.com/watch?v=kqJpuMNHF_g&feature=related�
http://www.youtube.com/watch?v=INLja6Ya3Ig&feature=related�
http://www.youtube.com/watch?v=INLja6Ya3Ig&feature=related�


Ghostbusters 
• Plot: Pacman's grandfather, Grandpac, 

learned to hunt ghosts for sport.   
 

• He was blinded by his power, but could 
hear the ghosts’ banging and clanging. 
 

• Transition Model: All ghosts move 
randomly, but are sometimes biased 
 

• Emission Model: Pacman knows a “noisy” 
distance to each ghost 

1

3

5

7

9

11

13

15
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True distance = 8 
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