Recap: Reasoning Over Time
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Passage of Time

Assume we have current belief P(X | evidence to date)

B(X:) = P(X¢le1:t) @ @
—>
Then, after one time step passes:

P(Xyy1le1) = P(Xyy1lowe) P(ziler )
Tt

Or, compactly:

B'(Xiq1) =) P(X'|2)B(x)

Basic idea: beliefs get “pushed” through the transitions

— With the “B” notation, we have to be careful about what time step t the
belief is about, and what evidence it includes



Example: Passage of Time

« As time passes, uncertainty “accumulates”
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B'(x" =Y P(X'|z)B(z)

Transition model: ghosts usually go clockwise



Example: Observation

o As we get observations, beliefs get reweighted,
uncertainty “decreases”
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B(X) « P(e|X)B'(X)



Example HMM

0.500
0.500
True 0.500 0.5!18
False 0.500 0.182
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The Forward Algorithm

* \We are given evidence at each time and want to know

By(X) = P(X¢le1:t)

* \We can derive the following updates

P(z¢ler:t) ocx P(xy,e1:4)
= Y P(zy_1,74,€1:1)

Lt—1

= Y P(zy_1,e1:4-1)P(zt|zi—1) P(e]xt)

Lt—1

= P(etlxt) Y P(wilewp—1)P(xi—1,€1:4-1)

Tt—1



Online Belief Updates

» Every time step, we start with current P(X | evidence)
» We update for time:

P(zler-1) = Y P(ziqleri1) - Plagey) OO

Lt—1

» We update for evidence:
P(xtle1:t) ocx P(weler:r—1) - Plet|zt) z

» The forward algorithm does both at once (and doesn’t normalize)
e Problem: space is |X| and time is |X|? per time step



 \oice Recognition:
http://www.youtube.com/watch?v=d9gDcHBmr3l



http://www.youtube.com/watch?v=d9gDcHBmr3I�

Filtering

Elapse time: compute P( X, | €..1)
P(ﬂi‘tlem—l) — Z P($t-1’€1:t—1) ‘ P(él?t\ilit—l)

Lt—1

Observe: compute P( X;| e;.)

P(z¢ler.s) o< P(ailer.—1) - Plet|y)

Belief: <P(rain), P(sun)>

@ @ P(X;)  <05,05> Prior on X,

P(X, | B4y = umbrella)  <0.82,0.18> Observe

@ @ P(Xs | B4 = umbrella

) <0.63,0.37>  Elapse time
P(X5 | By = umb, E5 = umb)  <0.88,0.12>  Observe



Particle Filtering

Sometimes |X| is too big to use exact
Inference

— |X| may be too big to even store B(X)

— E.g. X 'Is continuous

— |XJ?> may be too big to do updates

Solution: approximate inference
— Track samples of X, not all values
— Samples are called particles

— Time per step is linear in the number of
samples

— But: number needed may be large
— In memory: list of particles, not states

This is how robot localization works
In practice




Representation: Particles

Our representation of P(X) is now a
list of N particles (samples)

— Generally, N << [X]

— Storing map from X to counts would
defeat the point

P(Xx) approximated by number of
particles with value x

— So, many x will have P(x) = 0!
— More particles, more accuracy

For now, all particles have a
weight of 1

Particles:
(3.3)
(2,3)
(3.3)
(3,2)
(3.3)
(3,2)
(2,1)
(3.3)
(3,3)
(2,1)
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Particle Filtering: Elapse Time

« Each particle is moved by sampling its
next position from the transition model

' = sample(P(X'|z))

— This is like prior sampling — samples’
frequencies reflect the transition probs

— Here, most samples move clockwise, but some
move in another direction or stay in place

o This captures the passage of time

— If we have enough samples, close to the exact
values before and after (consistent)




Particle Filtering: Observe

« Slightly trickier:
— Don’t do rejection sampling (why not?)
— We don’t sample the observation, we fix it

— This is similar to likelihood weighting, so we
downweight our samples based on the
evidence

w(x) = P(e|x)

B(X) x P(e|]X)B'(X)

— Note that, as before, the probabilities don’t
sum to one, since most have been
downweighted (in fact they sum to an
approximation of P(e))




Particle Filtering: Resample

Rather than tracking OI?Bng,'VCl%S'l
weighted samples, we (2’1) W=0.9
resample (2:1) W=09
(3,1) w=0.4
N times, we choose (3.2) w=0.3
from our weighted (2,2) w=0.4
sample distribution (i.e. (11)w=0.4
draw with replacement) (3.1)w=04
(2,1) w=0.9
(3,2) w=0.3
This is analogous to
renormalizing the New Particles:
distribution (2.1) w=1 '
(2,1) w=1
Now the update is (21) w=1
complete for this time (3.2) w=1
step, continue with the (2,2) w=1
next one (21) w=1
(1,1) w=1
3,1)w=1
(2,1) w=1

(1,1) w=1



Robot Localization

 |nrobot localization:

— We know the map, but not the robot’s position
— Observations may be vectors of range finder readings

— State space and readings are typically continuous (works basically like
a very fine grid) and so we cannot store B(X)

— Particle filtering is often used

http://www.youtube.com/watch?
v=INLja6Ya3lg&feature=related

http://www.youtube.com/watch?v=kqg
JDUMNHF g&feature=related



http://www.youtube.com/watch?v=kqJpuMNHF_g&feature=related�
http://www.youtube.com/watch?v=kqJpuMNHF_g&feature=related�
http://www.youtube.com/watch?v=INLja6Ya3Ig&feature=related�
http://www.youtube.com/watch?v=INLja6Ya3Ig&feature=related�

Ghostbusters

Plot: Pacman's grandfather, Grandpac,
learned to hunt ghosts for sport.

He was blinded by his power, but could
hear the ghosts’ banging and clanging.

Transition Model: All ghosts move
randomly, but are sometimes biased

Emission Model: Pacman knows a “noisy”
distance to each ghost

Noisy distance prob
True distance = 8
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