Recap: Reasoning Over Time

• Markov models

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow P(X_1) \qquad P(X|X_{-1})$$

0.3

• Hidden Markov models

Х	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Passage of Time

• Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

• Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

• Or, compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

• As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0:	L <0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.01	0.05	<0.01	<0.01	<0.0
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0:	<0.01	0.06	<0.01	<0.01	<0.01	0.02	0.14	0.11	0.35	<0.01	<0.0
<0.01	<0.01	1.00	<0.01	<0.01	<0.01	<0.0:	0.76	0.06	0.06	<0.01	<0.01	0.07	0.03	0.05	<0.01	0.03	<0.0
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0:	L <0.01	0.06	<0.01	<0.01	<0.01	0.03	0.03	<0.01	<0.01	<0.01	<0.0

T = 1

$$T = 2$$

T = 5

$$B'(X') = \sum_{x} P(X'|x)B(x)$$

Transition model: ghosts usually go clockwise

Example: Observation

• As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

After observation

```
B(X) \propto P(e|X)B'(X)
```

Example HMM

The Forward Algorithm

• We are given evidence at each time and want to know

 $B_t(X) = P(X_t | e_{1:t})$

• We can derive the following updates

 $P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t | x_{t-1}) P(e_t | x_t)$$

 $= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1}) \quad \text{(x)}$$

• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

- The forward algorithm does both at once (and doesn't normalize)
- Problem: space is |X| and time is $|X|^2$ per time step

• Voice Recognition:

http://www.youtube.com/watch?v=d9gDcHBmr3I

Filtering

Elapse time: compute P($X_t | e_{1:t-1}$)

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute $P(X_t | e_{1:t})$

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

Particle Filtering

- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - $|X|^2$ may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, $N \ll |X|$
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x will have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time

• Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

• Slightly trickier:

- Don't do rejection sampling (why not?)
- We don't sample the observation, we fix it
- This is similar to likelihood weighting, so we downweight our samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

Note that, as before, the probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is analogous to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Old Particles: (3,3) = 0.1 (2,1) = 0.9 (2,1) = 0.9 (3,1) = 0.4 (3,2) = 0.3 (2,2) = 0.4 (1,1) = 0.4 (3,1) = 0.4 (2,1) = 0.9(3,2) = 0.3

New Particles:

- (2,1) w=1 (2,1) w=1 (2,1) w=1
- (3,2) w=1
- (2,2) w=1
- (2,1) w=1
- (1,1) w=1 (3,1) w=1
- (3,1) = 1(2,1) w=1
- (2,1) w=1 (1,1) w=1

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is often used

http://www.youtube.com/watch? v=INLja6Ya3Ig&feature=related

http://www.youtube.com/watch?v=kq JpuMNHF_g&feature=related

Ghostbusters

- **Plot:** Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- **Transition Model:** All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Noisy distance prob True distance = 8

