
Reinforcement Learning 
Basic idea: 

Receive feedback in the form of rewards 
Agent’s utility is defined by the reward function 
Must (learn to) act so as to maximize expected rewards 



Grid World 
The agent lives in a grid 
Walls block the agent’s path 
The agent’s actions do not always 
go as planned: 

80% of the time, the action North 
takes the agent North  
(if there is no wall there) 
10% of the time, North takes the 
agent West; 10% East 
If there is a wall in the direction the 
agent would have been taken, the 
agent stays put 

Small “living” reward each step 
Big rewards come at the end 
Goal: maximize sum of rewards* 



Grid Futures 
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Markov Decision Processes 
An MDP is defined by: 

A set of states s  S 
A set of actions a  A 
A transition function T(s,a,s’) 

Prob that a from s leads to s’ 
i.e., P(s’ | s,a) 
Also called the model 

A reward function R(s, a, s’)  
Sometimes just R(s) or R(s’) 

A start state (or distribution) 
Maybe a terminal state 
 

MDPs are a family of non-
deterministic search problems 

Reinforcement learning: MDPs 
where we don’t know the 
transition or reward functions 
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Keepaway 

http://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/swf/learn360.swf 
 
SATR  
S0, S0 
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What is Markov about MDPs? 

Andrey Markov (1856-1922) 
 

“Markov” generally means that given 
the present state, the future and the 
past are independent 

 

For Markov decision processes, 
“Markov” means: 

 



Solving MDPs 
In deterministic single-agent search problems, want an 
optimal plan, or sequence of actions, from start to a goal 
In an MDP, we want an optimal policy *: S  

A policy  gives an action for each state 
An optimal policy maximizes expected utility if followed 
Defines a reflex agent 

Optimal policy when 
R(s, a, s’) = -0.03 for all 
non-terminals s 



Example Optimal Policies 

 

R(s) = -2.0 R(s) = -0.4 

R(s) = -0.03 R(s) = -0.01 
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Utilities of Sequences 
In order to formalize optimality of a policy, need to 
understand utilities of sequences of rewards 
Typically consider stationary preferences: 
 
 
 
 
Theorem: only two ways to define stationary utilities 

Additive utility: 
 
 
Discounted utility: 
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Infinite Utilities?! 

Problem: infinite state sequences have infinite rewards 
 

Solutions: 
Finite horizon: 

Terminate episodes after a fixed T steps (e.g. life) 
Gives nonstationary policies (  depends on time left) 

Absorbing state: guarantee that for every policy, a terminal state 
will eventually be reached (like “done” for High-Low) 
Discounting: for 0 <  < 1 
 
 
 

Smaller  means smaller “horizon” – shorter term focus 
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Discounting 

Typically discount 
rewards by  < 1 
each time step 

Sooner rewards 
have higher utility 
than later rewards 
Also helps the 
algorithms 
converge 
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Recap: Defining MDPs 

Markov decision processes: 
States S 
Start state s0 
Actions A 
Transitions P(s’|s,a) (or T(s,a,s’)) 
Rewards R(s,a,s’) (and discount ) 
 
 

MDP quantities so far: 
Policy = Choice of action for each state 
Utility (or return) = sum of discounted rewards 

a 

s 

s, a 

s,a,s’ 
s’ 
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Optimal Utilities 
Fundamental operation: compute 
the values (optimal expectimax 
utilities) of states s 
 
Why?  Optimal values define 
optimal policies! 
 
Define the value of a state s: 

V*(s) = expected utility starting in s 
and acting optimally 

 
Define the value of a q-state (s,a): 

Q*(s,a) = expected utility starting in s, 
taking action a and thereafter 
acting optimally 

 
Define the optimal policy: 

*(s) = optimal action from state s 

a 

s 

s, a 

s,a,s’ 
s’ 
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The Bellman Equations 

Definition of “optimal utility” leads to a 
simple one-step lookahead relationship 
amongst optimal utility values: 

  

 Optimal rewards = maximize over first 
action and then follow optimal policy 

 

Formally: 
 
 

a 

s 

s, a 

s,a,s’ 
s’ 
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Solving MDPs 

We want to find the optimal policy * 
 
Proposal 1: modified expectimax search, starting from 
each state s: 

a 

s 

s, a 

s,a,s’ 
s’ 
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Why Not Search Trees? 
Why not solve with expectimax? 
 
Problems: 

This tree is usually infinite (why?) 
Same states appear over and over (why?) 
We would search once per state (why?) 
 

Idea: Value iteration 
Compute optimal values for all states all at 
once using successive approximations 
Will be a bottom-up dynamic program 
similar in cost to memoization 
Do all planning offline, no replanning 
needed! 
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Value Estimates 

Calculate estimates Vk
*(s) 

Not the optimal value of s! 
The optimal value 
considering only next k 
time steps (k rewards) 
As k  , it approaches 
the optimal value 
 

Almost solution: recursion 
(i.e. expectimax) 
Correct solution: dynamic 
programming 
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Value Iteration 
Idea: 

Start with V0
*(s) = 0, which we know is right (why?) 

Given Vi
*, calculate the values for all states for depth i+1: 

 
 
 
 
 
This is called a value update or Bellman update 
Repeat until convergence 
 

Theorem: will converge to unique optimal values 
Basic idea: approximations get refined towards optimal values 
Policy may converge long before values do 
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Example: Bellman Updates 
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max happens for 
a=right, other 
actions not shown 

Example: =0.9, living 
reward=0, noise=0.2 



Example: Value Iteration 

Information propagates outward from terminal 
states and eventually all states have correct 
value estimates 

V2 V3 
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Convergence* 

Define the max-norm: 
 
Theorem: For any two approximations U and V 
 
 

I.e. any distinct approximations must get closer to each other, so, 
in particular, any approximation must get closer to the true U and 
value iteration converges to a unique, stable, optimal solution 

Theorem: 
 
 

I.e. once the change in our approximation is small, it must also 
be close to correct 
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Practice: Computing Actions 

Which action should we chose from state s: 
Given optimal values V? 
 
 
 
Given optimal q-values Q? 
 
 
 
Lesson: actions are easier to select from Q’s! 
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Utilities for Fixed Policies 

Another basic operation: compute 
the utility of a state s under a fix 
(general non-optimal) policy 
 
Define the utility of a state s, under a 
fixed policy : 
V (s) = expected total discounted 

rewards (return) starting in s and 
following  

 
Recursive relation (one-step look-
ahead / Bellman equation): 

(s) 

s 

s, (s) 

s, (s),s’ 

s’ 
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Value Iteration 
Idea: 

Start with V0
*(s) = 0, which we know is right (why?) 

Given Vi
*, calculate the values for all states for depth i+1: 

 
 
 
 
 
This is called a value update or Bellman update 
Repeat until convergence 
 

Theorem: will converge to unique optimal values 
Basic idea: approximations get refined towards optimal values 
Policy may converge long before values do 
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Policy Iteration 
Problem with value iteration: 

Considering all actions each iteration is slow: takes |A| times longer 
than policy evaluation 
But policy doesn’t change each iteration, time wasted 
 

Alternative to value iteration: 
Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal 
utilities!) until convergence (fast) 
Step 2: Policy improvement: update policy using one-step lookahead 
with resulting converged (but not optimal!) utilities (slow but infrequent) 
Repeat steps until policy converges 
 

This is policy iteration 
It’s still optimal! 
Can converge faster under some conditions 
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Policy Iteration 

Policy evaluation: with fixed current policy , find values 
with simplified Bellman updates: 

Iterate until values converge 

 
 
 
Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead 
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Comparison 
In value iteration: 

Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (possibly implicitly, based on 
current policy) 

 
In policy iteration: 

Several passes to update utilities with frozen policy 
Occasional passes to update policies 
 

Hybrid approaches (asynchronous policy iteration): 
Any sequences of partial updates to either policy entries or 
utilities will converge if every state is visited infinitely often 
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Reinforcement Learning 

Reinforcement learning: 
Still assume an MDP: 

A set of states s  S 
A set of actions (per state) A 
A model T(s,a,s’) 
A reward function R(s,a,s’) 

Still looking for a policy (s) 
 
New twist: don’t know T or R 

i.e. don’t know which states are good or what the actions do 
Must actually try actions and states out to learn 
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Demo: Robot Dogs! 



Passive Learning 

Simplified task 
You don’t know the transitions T(s,a,s’) 
You don’t know the rewards R(s,a,s’) 
You are given a policy (s) 
Goal: learn the state values 
  what policy evaluation did 
 

In this case: 
Learner “along for the ride” 
No choice about what actions to take 
Just execute the policy and learn from experience 
We’ll get to the active case soon 
This is NOT offline planning!  You actually take actions in the 
world and see what happens  
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Example: Direct Evaluation 

Episodes: 

x 

y 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done) 
V(2,3) ~ (96 + -103) / 2 = -3.5 

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3 

 = 1, R = -1  

+100 

-100 
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Recap: Model-Based Policy Evaluation 

Simplified Bellman updates to 
calculate V for a fixed policy: 

New V is expected one-step-look-
ahead using current V 
Unfortunately, need T and R 
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Model-Based Learning 
Idea: 

Learn the model empirically through experience 
Solve for values as if the learned model were correct 
 

Simple empirical model learning 
Count outcomes for each s,a 
Normalize to give estimate of T(s,a,s’) 
Discover R(s,a,s’) when we experience (s,a,s’) 

 
Solving the MDP with the learned model 

Iterative policy evaluation, for example 
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s 

s, (s) 

s, (s),s’ 

s’ 



Example: Model-Based Learning 

Episodes: 

x 

y 

T(<3,3>, right, <4,3>) = 1 / 3 

T(<2,3>, right, <3,3>) = 2 / 2 

+100 

-100 

 = 1 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100  

(done) 
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Model-Free Learning 
Want to compute an expectation weighted by P(x): 
 
 
Model-based: estimate P(x) from samples, compute expectation 
 
 
 
 
Model-free: estimate expectation directly from samples 
 
 
 
Why does this work?  Because samples appear with the right 
frequencies! 

14 



Sample-Based Policy Evaluation? 

Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) 
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(s) 

s 

s, (s) 

s1’ s2’ s3’ 
s, (s),s’ 

s’ 

Almost!  But we only 
actually make progress 
when we move to i+1. 



Temporal-Difference Learning 
Big idea: learn from every experience! 

Update V(s) each time we experience (s,a,s’,r) 
Likely s’ will contribute updates more often 

 
Temporal difference learning 

Policy still fixed! 
Move values toward value of whatever 
successor occurs: running average! 
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(s) 

s 

s, (s) 

s’ 

Sample of V(s): 

Update to V(s): 

Same update: 



Exponential Moving Average 

Exponential moving average  
Makes recent samples more important 
 
 
 
 
Forgets about the past (distant past values were wrong anyway) 
Easy to compute from the running average  

 
 
Decreasing learning rate can give converging averages 
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Example: TD Policy Evaluation 

Take  = 1,  = 0.5 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done) 
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Problems with TD Value Learning 

TD value leaning is a model-free way 
to do policy evaluation 
However, if we want to turn values into 
a (new) policy, we’re sunk: 
 
 
 
 
 
Idea: learn Q-values directly 
Makes action selection model-free too! 

a 

s 

s, a 

s,a,s’ 
s’ 
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Active Learning 

Full reinforcement learning 
You don’t know the transitions T(s,a,s’) 
You don’t know the rewards R(s,a,s’) 
You can choose any actions you like 
Goal: learn the optimal policy 
  what value iteration did! 
 

In this case: 
Learner makes choices! 
Fundamental tradeoff: exploration vs. exploitation 
This is NOT offline planning!  You actually take actions in the 
world and find out what happens  
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Q-Learning 
Q-Learning: sample-based Q-value iteration 
Learn Q*(s,a) values 

Receive a sample (s,a,s’,r) 
Consider your old estimate: 
Consider your new sample estimate: 

 
 

 

 
Incorporate the new estimate into a running average: 
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Q-Learning Properties 
Amazing result: Q-learning converges to optimal policy 

If you explore enough 
If you make the learning rate small enough 
  but not decrease it too quickly! 
Basically doesn’t matter how you select actions (!) 

 

Neat property: off-policy learning 
learn optimal policy without following it (some caveats) 

S E S E 
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Exploration / Exploitation 

Several schemes for forcing exploration 
Simplest: random actions (  greedy) 

Every time step, flip a coin 
With probability , act randomly 
With probability 1- , act according to current policy 
 

Problems with random actions? 
You do explore the space, but keep thrashing 
around once learning is done 
One solution: lower  over time 
Another solution: exploration functions 
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Exploration Functions 

When to explore 
Random actions: explore a fixed amount 
Better idea: explore areas whose badness is not (yet) 
established 
 

Exploration function 
Takes a value estimate and a count, and returns an optimistic 
utility, e.g.                                    (exact form not important) 
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Q-Learning 

Q-learning produces tables of q-values: 
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The Story So Far: MDPs and RL 

If we know the MDP 
Compute V*, Q*, * exactly 
Evaluate a fixed policy  

 
 

We can estimate the MDP then solve 
 
We can estimate V for a fixed policy  
We can estimate Q*(s,a) for the 
optimal policy while executing an 
exploration policy 
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Model-based DPs 
Value and policy 
Iteration 
Policy evaluation 

 
Model-based RL 
 
Model-free RL: 

Value learning 
Q-learning 

Things we know how to do: Techniques: 
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