
Reinforcement Learning
Basic idea:

Receive feedback in the form of rewards
Agent’s utility is defined by the reward function
Must (learn to) act so as to maximize expected rewards

Grid World
The agent lives in a grid
Walls block the agent’s path
The agent’s actions do not always
go as planned:

80% of the time, the action North
takes the agent North
(if there is no wall there)
10% of the time, North takes the
agent West; 10% East
If there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards*

Grid Futures

5

Deterministic Grid World Stochastic Grid World

X

X

 E N S W

X

E N S W

?

X

X X

Markov Decision Processes
An MDP is defined by:

A set of states s S
A set of actions a A
A transition function T(s,a,s’)

Prob that a from s leads to s’
i.e., P(s’ | s,a)
Also called the model

A reward function R(s, a, s’)
Sometimes just R(s) or R(s’)

A start state (or distribution)
Maybe a terminal state

MDPs are a family of non-
deterministic search problems

Reinforcement learning: MDPs
where we don’t know the
transition or reward functions

6

Keepaway

http://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/swf/learn360.swf

SATR
S0, S0

7

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/swf/learn360.swf
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/swf/learn360.swf

What is Markov about MDPs?

Andrey Markov (1856-1922)

“Markov” generally means that given
the present state, the future and the
past are independent

For Markov decision processes,
“Markov” means:

Solving MDPs
In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal
In an MDP, we want an optimal policy *: S

A policy gives an action for each state
An optimal policy maximizes expected utility if followed
Defines a reflex agent

Optimal policy when
R(s, a, s’) = -0.03 for all
non-terminals s

Example Optimal Policies

R(s) = -2.0 R(s) = -0.4

R(s) = -0.03 R(s) = -0.01

10

Utilities of Sequences
In order to formalize optimality of a policy, need to
understand utilities of sequences of rewards
Typically consider stationary preferences:

Theorem: only two ways to define stationary utilities

Additive utility:

Discounted utility:

2

Infinite Utilities?!

Problem: infinite state sequences have infinite rewards

Solutions:
Finite horizon:

Terminate episodes after a fixed T steps (e.g. life)
Gives nonstationary policies (depends on time left)

Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)
Discounting: for 0 < < 1

Smaller means smaller “horizon” – shorter term focus

3

Discounting

Typically discount
rewards by < 1
each time step

Sooner rewards
have higher utility
than later rewards
Also helps the
algorithms
converge

4

Recap: Defining MDPs

Markov decision processes:
States S
Start state s0
Actions A
Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount)

MDP quantities so far:
Policy = Choice of action for each state
Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

5

Optimal Utilities
Fundamental operation: compute
the values (optimal expectimax
utilities) of states s

Why? Optimal values define
optimal policies!

Define the value of a state s:

V*(s) = expected utility starting in s
and acting optimally

Define the value of a q-state (s,a):

Q*(s,a) = expected utility starting in s,
taking action a and thereafter
acting optimally

Define the optimal policy:

*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

6

The Bellman Equations

Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

 Optimal rewards = maximize over first
action and then follow optimal policy

Formally:

a

s

s, a

s,a,s’
s’

7

Solving MDPs

We want to find the optimal policy *

Proposal 1: modified expectimax search, starting from
each state s:

a

s

s, a

s,a,s’
s’

8

Why Not Search Trees?
Why not solve with expectimax?

Problems:

This tree is usually infinite (why?)
Same states appear over and over (why?)
We would search once per state (why?)

Idea: Value iteration
Compute optimal values for all states all at
once using successive approximations
Will be a bottom-up dynamic program
similar in cost to memoization
Do all planning offline, no replanning
needed!

9

Value Estimates

Calculate estimates Vk
*(s)

Not the optimal value of s!
The optimal value
considering only next k
time steps (k rewards)
As k , it approaches
the optimal value

Almost solution: recursion
(i.e. expectimax)
Correct solution: dynamic
programming

10

Value Iteration
Idea:

Start with V0
*(s) = 0, which we know is right (why?)

Given Vi
*, calculate the values for all states for depth i+1:

This is called a value update or Bellman update
Repeat until convergence

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

11

Example: Bellman Updates

12

max happens for
a=right, other
actions not shown

Example: =0.9, living
reward=0, noise=0.2

Example: Value Iteration

Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

13

Convergence*

Define the max-norm:

Theorem: For any two approximations U and V

I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

Theorem:

I.e. once the change in our approximation is small, it must also
be close to correct

14

Practice: Computing Actions

Which action should we chose from state s:
Given optimal values V?

Given optimal q-values Q?

Lesson: actions are easier to select from Q’s!

 15

Utilities for Fixed Policies

Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

Define the utility of a state s, under a
fixed policy :
V (s) = expected total discounted

rewards (return) starting in s and
following

Recursive relation (one-step look-
ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

17

Value Iteration
Idea:

Start with V0
*(s) = 0, which we know is right (why?)

Given Vi
*, calculate the values for all states for depth i+1:

This is called a value update or Bellman update
Repeat until convergence

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

4

Policy Iteration
Problem with value iteration:

Considering all actions each iteration is slow: takes |A| times longer
than policy evaluation
But policy doesn’t change each iteration, time wasted

Alternative to value iteration:
Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal
utilities!) until convergence (fast)
Step 2: Policy improvement: update policy using one-step lookahead
with resulting converged (but not optimal!) utilities (slow but infrequent)
Repeat steps until policy converges

This is policy iteration
It’s still optimal!
Can converge faster under some conditions

5

Policy Iteration

Policy evaluation: with fixed current policy , find values
with simplified Bellman updates:

Iterate until values converge

Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

6

Comparison
In value iteration:

Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

In policy iteration:

Several passes to update utilities with frozen policy
Occasional passes to update policies

Hybrid approaches (asynchronous policy iteration):
Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

7

Reinforcement Learning

Reinforcement learning:
Still assume an MDP:

A set of states s S
A set of actions (per state) A
A model T(s,a,s’)
A reward function R(s,a,s’)

Still looking for a policy (s)

New twist: don’t know T or R

i.e. don’t know which states are good or what the actions do
Must actually try actions and states out to learn

8

Demo: Robot Dogs!

Passive Learning

Simplified task
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’)
You are given a policy (s)
Goal: learn the state values
 what policy evaluation did

In this case:
Learner “along for the ride”
No choice about what actions to take
Just execute the policy and learn from experience
We’ll get to the active case soon
This is NOT offline planning! You actually take actions in the
world and see what happens
 9

Example: Direct Evaluation

Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

 = 1, R = -1

+100

-100

10

Recap: Model-Based Policy Evaluation

Simplified Bellman updates to
calculate V for a fixed policy:

New V is expected one-step-look-
ahead using current V
Unfortunately, need T and R

11

(s)

s

s, (s)

s, (s),s’

s’

Model-Based Learning
Idea:

Learn the model empirically through experience
Solve for values as if the learned model were correct

Simple empirical model learning
Count outcomes for each s,a
Normalize to give estimate of T(s,a,s’)
Discover R(s,a,s’) when we experience (s,a,s’)

Solving the MDP with the learned model

Iterative policy evaluation, for example

12

(s)

s

s, (s)

s, (s),s’

s’

Example: Model-Based Learning

Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

 = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

13

Model-Free Learning
Want to compute an expectation weighted by P(x):

Model-based: estimate P(x) from samples, compute expectation

Model-free: estimate expectation directly from samples

Why does this work? Because samples appear with the right
frequencies!

14

Sample-Based Policy Evaluation?

Who needs T and R? Approximate the
expectation with samples (drawn from T!)

15

(s)

s

s, (s)

s1’ s2’ s3’
s, (s),s’

s’

Almost! But we only
actually make progress
when we move to i+1.

Temporal-Difference Learning
Big idea: learn from every experience!

Update V(s) each time we experience (s,a,s’,r)
Likely s’ will contribute updates more often

Temporal difference learning

Policy still fixed!
Move values toward value of whatever
successor occurs: running average!

16

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

Exponential moving average
Makes recent samples more important

Forgets about the past (distant past values were wrong anyway)
Easy to compute from the running average

Decreasing learning rate can give converging averages

17

Example: TD Policy Evaluation

Take = 1, = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

18

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation
However, if we want to turn values into
a (new) policy, we’re sunk:

Idea: learn Q-values directly
Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

19

Active Learning

Full reinforcement learning
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’)
You can choose any actions you like
Goal: learn the optimal policy
 what value iteration did!

In this case:
Learner makes choices!
Fundamental tradeoff: exploration vs. exploitation
This is NOT offline planning! You actually take actions in the
world and find out what happens

2

Q-Learning
Q-Learning: sample-based Q-value iteration
Learn Q*(s,a) values

Receive a sample (s,a,s’,r)
Consider your old estimate:
Consider your new sample estimate:

Incorporate the new estimate into a running average:

4

Q-Learning Properties
Amazing result: Q-learning converges to optimal policy

If you explore enough
If you make the learning rate small enough
 but not decrease it too quickly!
Basically doesn’t matter how you select actions (!)

Neat property: off-policy learning
learn optimal policy without following it (some caveats)

S E S E

5

Exploration / Exploitation

Several schemes for forcing exploration
Simplest: random actions (greedy)

Every time step, flip a coin
With probability , act randomly
With probability 1- , act according to current policy

Problems with random actions?
You do explore the space, but keep thrashing
around once learning is done
One solution: lower over time
Another solution: exploration functions

6

Exploration Functions

When to explore
Random actions: explore a fixed amount
Better idea: explore areas whose badness is not (yet)
established

Exploration function
Takes a value estimate and a count, and returns an optimistic
utility, e.g. (exact form not important)

7

Q-Learning

Q-learning produces tables of q-values:

8

The Story So Far: MDPs and RL

If we know the MDP
Compute V*, Q*, * exactly
Evaluate a fixed policy

We can estimate the MDP then solve

We can estimate V for a fixed policy
We can estimate Q*(s,a) for the
optimal policy while executing an
exploration policy

5

Model-based DPs
Value and policy
Iteration
Policy evaluation

Model-based RL

Model-free RL:

Value learning
Q-learning

Things we know how to do: Techniques:

	Slide Number 1
	Slide Number 2
	Reinforcement Learning
	Grid World
	Grid Futures
	Markov Decision Processes
	Keepaway
	What is Markov about MDPs?
	Solving MDPs
	Example Optimal Policies

