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Data	
  with	
  a5ributes	
  

Machine	
  Learning	
  in	
  a	
  Nutshell	
  

ID	
   A1	
   Reflex	
   RefLow	
  RefHigh	
  Label	
  
1	
   5.6	
   Normal	
   3.4	
   7	
   No	
  
2	
   5.5	
   Normal	
   2.4	
   5.7	
   No	
  
3	
   5.3	
   Normal	
   2.4	
   5.7	
   Yes	
  
4	
   5.3	
   Elevated	
   2.4	
   5.7	
   No	
  
5	
   6.3	
   Normal	
   3.4	
   7	
   No	
  
6	
   3.3	
   Normal	
   2.4	
   5.7	
   Yes	
  
7	
   5.1	
   Decreased	
   2.4	
   5.7	
   Yes	
  
8	
   4.2	
   Normal	
   2.4	
   5.7	
   Yes	
  
…	
  …	
   …	
   …	
   …	
   …	
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   5.7	
   Yes	
  
7	
   5.1	
   Decreased	
   2.4	
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A training set 
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ID3-induced  
decision tree 
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Decision tree-induced partition – 
example 
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k-Nearest Neighbor 
Instance-Based Learning 

Some material adapted from slides by Andrew Moore, CMU. 
 

Visit http://www.autonlab.org/tutorials/ for 
Andrew’s repository of Data Mining tutorials. 
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1-Nearest Neighbor 

n  One of the simplest of all machine learning 
classifiers 

n  Simple idea:  label a new point the same as the 
closest known point 

Label it red.!
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1-Nearest Neighbor 

n  A type of instance-based learning 
n  Also known as “memory-based” learning 

n  Forms a Voronoi tessellation of the instance 
space 
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Distance Metrics 
n  Different metrics can change the decision surface 

n  Standard Euclidean distance metric: 
n  Two-dimensional:  Dist(a,b) = sqrt((a1 – b1)2 + (a2 – b2)2) 
n  Multivariate:  Dist(a,b) = sqrt(∑ (ai – bi)2) 

Dist(a,b) =(a1 – b1)2 + (a2 – b2)2! Dist(a,b) =(a1 – b1)2 + (3a2 – 3b2)2!

Adapted from “Instance-Based Learning” !
lecture slides by Andrew Moore, CMU.!
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Four Aspects of an 
Instance-Based Learner: 

1.  A distance metric 
2.  How many nearby neighbors to look at? 
3.  A weighting function (optional) 
4.  How to fit with the local points? 

Adapted from “Instance-Based Learning” !
lecture slides by Andrew Moore, CMU.!
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1-NN’s Four Aspects as an 
Instance-Based Learner: 

1.  A distance metric 
n  Euclidian 

2.  How many nearby neighbors to look at? 
n  One 

3.  A weighting function (optional) 
n  Unused 

4.  How to fit with the local points? 
n  Just predict the same output as the nearest neighbor. 

Adapted from “Instance-Based Learning” !
lecture slides by Andrew Moore, CMU.!
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Zen Gardens 
Mystery of renowned zen garden revealed   [CNN Article] 
Thursday, September 26, 2002 Posted: 10:11 AM EDT (1411 GMT) 
 

LONDON (Reuters) -- For centuries visitors to the renowned Ryoanji Temple garden in 
Kyoto, Japan have been entranced and mystified by the simple arrangement of rocks. 
 

The five sparse clusters on a rectangle of raked gravel are said to be pleasing to the eyes 
of the hundreds of thousands of tourists who visit the garden each year. 
 

Scientists in Japan said on Wednesday they now believe they have discovered its 
mysterious appeal. 
 

"We have uncovered the implicit structure of the Ryoanji garden's visual ground and have 
shown that it includes an abstract, minimalist depiction of natural scenery," said Gert Van 
Tonder of Kyoto University. 
 

The researchers discovered that the empty space of the garden evokes a hidden image of 
a branching tree that is sensed by the unconscious mind. 
 

"We believe that the unconscious perception of this pattern contributes to the enigmatic 
appeal of the garden," Van Tonder added. 
 

He and his colleagues believe that whoever created the garden during the Muromachi era 
between 1333-1573 knew exactly what they were doing and placed the rocks around the 
tree image. 
 

By using a concept called medial-axis transformation, the scientists showed that the 
hidden branched tree converges on the main area from which the garden is viewed. 
 

The trunk leads to the prime viewing site in the ancient temple that once overlooked the 
garden. It is thought that abstract art may have a similar impact. 
 

"There is a growing realisation that scientific analysis can reveal unexpected structural 
features hidden in controversial abstract paintings," Van Tonder said 

Adapted from “Instance-Based Learning” lecture slides by Andrew Moore, CMU.!
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k – Nearest Neighbor 

n  Generalizes 1-NN to smooth away noise in the 
labels 

n  A new point is now assigned the most frequent 
label of its k nearest neighbors 

Label it red, when k = 3!

Label it blue, when k = 7!
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k-Nearest Neighbor (k = 9) 

A magnificent job of 
noise smoothing. 
Three cheers for 9-
nearest-neighbor.!
But the lack of 
gradients and the 
jerkiness isn’t good.!

Appalling behavior! 
Loses all the detail that 
1-nearest neighbor 
would give.  The tails 
are horrible!!

Fits much less of the 
noise, captures trends. 
But still, frankly, 
pathetic compared!
with linear regression.!

Adapted from “Instance-Based Learning” !
lecture slides by Andrew Moore, CMU.!
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The 
Naïve Bayes 

Classifier 

Some material adapted from slides by 
Tom Mitchell, CMU. 
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The Naïve Bayes Classifier 
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n  Recall Bayes rule: 
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Deriving Naïve Bayes 

n  Idea:  use the training data to directly estimate: 

n  Then, we can use these values to estimate 
    using Bayes rule. 

 
n  Recall that representing the full joint probability 

      is not practical. 

)(YP)|( YXP and 

)|( newXYP

)|,,,( 21 YXXXP n…
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Deriving Naïve Bayes 

n  However, if we make the assumption that the 
attributes are independent, estimation is easy! 

n  In other words, we assume all attributes are 
conditionally independent given Y. 
n  Often this assumption is violated in practice, but 

more on that later… 

∏=
i

in YXPYXXP )|()|,,( 1…
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Deriving Naïve Bayes 

n  Let                               and label Y be discrete. 

n  Then, we can estimate        and 
 directly from the training data by counting! 

nXXX ,,1…=

)( iYP)|( ii YXP

Sky Temp Humid Wind Water Forecast Play? 
sunny warm normal strong warm same yes 
sunny warm high strong warm same yes 
rainy cold high strong warm change no 
sunny warm high strong cool change yes 

P(Sky = sunny | Play = yes) = ? P(Humid = high | Play = yes) = ? 
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The Naïve Bayes Classifier 
n  Now we have: 

 which is just a one-level Bayesian Network 

n  To classify a new point Xnew: 

)( iHP
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The Naïve Bayes Algorithm 

n  For each value yk 

n  Estimate P(Y = yk) from the data. 
n  For each value xij of each attribute Xi 

n Estimate P(Xi=xij | Y = yk) 

n  Classify a new point via: 

n  In practice, the independence assumption 
doesn’t often hold true, but Naïve Bayes 
performs very well despite it. 

∏ ==⎯⎯←
i

kikynew yYXPyYPY
k

)|()(maxarg
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Naïve Bayes Applications 

n  Text classification 
n  Which e-mails are spam? 
n  Which e-mails are meeting notices? 
n  Which author wrote a document? 

n  Classifying mental states 

People Words Animal Words 

Learning P(BrainActivity | WordCategory) 

Pairwise Classification 
Accuracy: 85% 



Polynomial Curve 
Fitting 
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Slides	
  adapted	
  from	
  	
  
Pa5ern	
  RecogniHon	
  and	
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by	
  Christopher	
  Bishop	
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λ regularization parameter 
   higher λ à more regularization 



RegularizaHon:	
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