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Machine Learning in a Nutshell

Data

Data with attributes

ID Al

1 5.6 Normal 34
2 55 Normal 2.4
3 53 Normal 2.4
4 53 Elevated 2.4
5 6.3 Normal 3.4
6 3.3 Normal 2.4
7 5.1 Decreased 2.4
8 4.2 Normal 2.4

Instance x; € X
with label y; € )Y

7
5.7
5.7
5.7

7
5.7
5.7
5.7

Al Reflex RefLow RefHigh Label

No
No
Yes
No
No
Yes
Yes
Yes

Performance
Measure

T il

— E —



Machine Learning in a Nutshell

Data

Data with attributes

Instance x; € X
with label y; € )Y
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Machine Learning in a Nutshell

Model Performance

Measure

Dt

Machine Learner

Hierarchical

Data with attributes Model f: X — Y Evaluation
ID A1 Reflex RefLow RefHigh Label Logistic regression| , , - Measure predicted labels vs
1 56 Normal 34 7 No - actual labels on test data
2 5.5 Normal 2.4 5.7 No Supp(?rt vector . °
3 53 Normal 24 57 Yes machines . S _
4 53 Elevated 24 57 No Learning Curve
5 6.3 Normal 34 7 No -
s ii DNormalCI ij i; zes = | Mixture 8
o ecrease o o es (-
8 42 Normal 24 57 Yes Models g
...... c
o)
4y
| -
)
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Instance x; € X
with label y; € )Y

Bayesian
Networks
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A training set

Atirbo e Caal
Exarmple
Al't | Bar' | f13 | Nan Patr | Pixze | Raan| Res Type £t Wil WMot
X, Yes | No | No | Yes | Some | S5 | No | Yes | Ffiendh | O-IO Yes
X- Yes | No | Ne Yes full s Neo | Na Thc JOA0 No
Xs No | Yes| No | No | Some | & | No | No | Ruger| O-ID Yes
Xe Yes | No | Yes | Yes fall s Neo | No A (2% 2 Yes
Xs Tes | No | Yes | No | full | 55 | No | lex | fiench | >60 No
Xa No Yez | No Yez: | Some 55 Yes Ye=z | Italinn o-J0 Yes
X; No | Yes| No | No | Nome | & | Yes | No | Ruger| O-ID No
X No | No| No | Yes | Some | S8 | les | les The o0 Yes
Xo No | Yes| Yes | No | Ffull § | Yes | No | BRuger| 60 No
Xo Fes | Yes | VYes | Yes | Full | S58 | No | Yes | Malia | LD No
Xu Ne | No | No No Noae s No | No Thea o-Jo No
Xp Yes | Yes | Yes | Yes full s Neo | Ne | Buger | IO Yes
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k-Nearest Neighbor
Instance-Based Learning

Some material adapted from slides by Andrew Moore, CMU.

Visit for
Andrew’ s repository of Data Mining tutorials.
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1-Nearest Neighbot

One of the simplest of all machine learning
classifiers

Simple idea: label a new point the same as the
closest known point

Label it red.

.
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1-Nearest Neighbot

A type of instance-based learning

11 b4 .
Also known as memory-based” learning

Forms a Voronoi tessellation of the instance
space
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Distance Metrics

Difterent metrics can change the decision surface

Dist(a,b) =(a; —b;)*+ (a, —b,)*>  Dist(a,b) =(a; —b;)>+ (3a, — 3b,)?

Standard Euclidean distance mettric:
Two-dimensional: Dist(a,b) = sqrt((a; — b))? + (a, — b,)?)
Multivariate: Dist(a,b) = sqrt(}. (a, — b,)?)

Adapted from “Instance-Based| Bearning”
lecture slides by Andrew Moore, CMU.



Four Aspects of an
Instance-Based Learner:

A distance metric

How many nearby neighbors to look at?
A weighting function (optional)

How to fit with the local points?

Adapted from “Instance-Based Learning”
lecture slides by Andrew MooreA{¢MU.



1-NN'’ s Four Aspects as an
Instance-Based Learner:

A distance metric
Euclidian

How many nearby neighbors to look at?
One

A weighting function (optional)
Unused

How to fit with the local points?
Just predict the same output as the nearest neighbor.

Adapted from “Instance-Based Learning”
lecture slides by Andrew Moore{GMU.



Z.en Gardens

Mystery of renowned zen garden revealed [CNN Article]
Thursday, September 26, 2002 Posted: 10:11 AM EDT (1411 GMT)

LONDON (Reuters) -- For centuries visitors to the renowned Ryoanji Temple garden in
Kyoto, Japan have been entranced and mystified by the simple arrangement of rocks.

The five sparse clusters on a rectangle of raked gravel are said to be pleasing to the eyes
of the hundreds of thousands of tourists who visit the garden each year.

Scientists in Japan said on Wednesday they now believe they have discovered its
mysterious appeal.

"We have uncovered the implicit structure of the Ryoanji garden's visual ground and have
shown that it includes an abstract, minimalist depiction of natural scenery," said Gert Van
Tonder of Kyoto University.

The researchers discovered that the empty space of the garden evokes a hidden image of
a branching tree that is sensed by the unconscious mind.

"We believe that the unconscious perception of this pattern contributes to the enigmatic
appeal of the garden," Van Tonder added.

He and his colleagues believe that whoever created the garden during the Muromachi era
between 1333-1573 knew exactly what they were doing and placed the rocks around the
tree image.

By using a concept called medial-axis transformation, the scientists showed that the
hidden branched tree converges on the main area from which the garden is viewed.

The trunk leads to the prime viewing site in the ancient temple that once overlooked the
garden. It is thought that abstract art may have a similar impact.

"There is a growing realisation that scientific analysis can reveal unexpected structural
features hidden in controversial abstract paintings," Van Tonder said

Adapted from “Instance-Based Learning” lecture slides by Andrew Moore, CMU.
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k — Nearest Neighbotr

Generalizes 1-NN to smooth away noise in the
labels

A new point is now assigned the most frequent
label of its £ nearest neighbors

O
® abel it red, when k =3 @

L
‘ @
Label it blue, when k =7



k-Nearest Neighbor (k = 9)

Mp el e BRI WS DRl 1
AP iR

Li]

A magnificent job of
noise smoothing.
Three cheers for 9-
nearest-neighbor.
But the lack of
gradients and the
jerkiness isn’ t good.

FER AR

Appalling behavior!
Loses all the detail that
1-nearest neighbor
would give. The tails
are horrible!

Ed s L T O ¥ |

Fits much less of the

noise, captures trends.
But still, frankly,
pathetic compared
with linear regression.

Adapted from “Instance-Based Learning”
lecture slides by Andrew Moore{@MU.



The
Naive Bayes
Classifier

Some material adapted from slides by
Tom Mitchell, CMU.



The Naive Bayes Classifier

Recall Bayes rule: P(Y)P(X,|Y)
P(Y, | X)=—"—"1—

l

P(X,)
Which is short for:

P(Y =y)P(X =x,Y =y,)
P(X =x,)

P(Y=yi|X='xj)=

We can re-write this as:

P(Y=yi)P(X='xj|Y=yi)

P(Y = y,| X =x,) =
(Y =y, X)) EkP(X=xj|Y=yk)P(Y=yk)

20



Deriving Naive Bayes

Idea: use the training data to directly estimate:
P(X|Y) and P(Y)

Then, we can use these values to estimate

P(Y | X, ) using Bayes rule.

Recall that representing the full joint probability
P(X,,X,,...,X, |Y) isnot practical.

21



Deriving Naive Bayes

However, 1f we make the assumption that the
attributes are independent, estimation 1s easy!

P(X,,...X |Y)= HP(XZ. 'Y)

In other words, we assume all attributes are
conditionally independent given Y.

Often this assumption is violated in practice, but
more on that later. ..

22



Deriving Naive Bayes

Tet X = <X1, .. -,Xn> and label Y be discrete.

Then, we can estimate P(X,|Y.) and P(Y;)

directly from the training data by counting!

Sky
sunny

sunny
rainy
sunny

Temp
warm
warm
cold
warm

Humid
normal
high
high
high

Wind
strong
strong
strong
strong

Water Forecast Play?

warm same yes
warm same yes
warm change 1o

cool change yes

23



The Naive Bayes Classifier

Now we have:
P(Y=yj)]_[i P(Xi|Y=yj)

PY=y |X,...X )=
(Y =y, ) N P = y)[[PX 1Y = 3,)

which is just a one-level Bayesian Network

P( Xy I j QA Labels (hypotheses)
X, - X, ..+ X, Attributes (evidence)

To classity a new point X___:

new’

Y., <——argmaxP(Y = y)| [P(X Y = »)
Yk ;

24



The Naive Bayes Algorithm

For each value y,
Estimate P(Y = y;) from the data.

For each value X;; of each attribute X

Classity a new point via:
Y., <——argmax P(Y = y)| [P(X Y = »)
Vi ;

In practice, the independence assumption
’ .o

doesn  t often hold true, but Naive Bayes

performs very well despite it.

25



Naive Bayes Applications

Text classification
Which e-mails are spam?
Which e-mails are meeting notices?

Which author wrote a document?

Classitying mental states

Pairwise Classification
Accuracy: 85%

People Words Animal Words

26



Polynomial Curve
Fitting

Slides adapted from

Pattern Recognition and

Machine Learning
by Christopher Bishop

27



Polynomial Curve Fitting

0 1

M
ylr, w :w0+w1x+w2x2+...+waM: wix?
J
j=0




Sum-of-Squares Error Function

t‘ oty
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Ot" Order Polynomial




15t Order Polynomial




3" Order Polynomial




9th Order Polynomial




Over-fitting

|

—©— Training
—O— Test

0.5¢

Error




Polynomial Coefficients

M=0 M=1 M=3 M =9
wg | 019 082  0.31 0.35
wk 1.27  7.99 232.37
w -25.43 -5321.83
wk 17.37  48568.31
w -231639.30
wi 640042.26
wi -1061800.52
wk 1042400.18
wi -557682.99
wy 125201.43




Data Set Size: N =15

9t Order Polynomial




Data Set Size: N =100

9t Order Polynomial




Regularization

Penalize large coefficient values

A 2
Z{y Tp, W —tn}2+§(Hsz)
L, Norm
M th
|wll2 = sz el




Regularization

A regularization parameter
higher A = more regularization

Penalize large coefficient values

Bw) = 3 3 {lwnw) — 1) + 5 (Iwllo)?

B(w) = 3 Dyl w) — £} + 5 3w

L, Norm

_ th
[wlla =, /> wi s orw
()




Regularization: 1 =1.5E-8




Regularization: 1=1




Regularization: Erus VS. In A

Training
Test

y

=35 -30 Tk -25 -20




Polynomial Coefficients

InA\=-00 InA=-18 InA=0
wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
w) -231639.30 -3.89 -0.03
wE 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
ws | 1042400.18 -45.95 -0.00
w3 -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01




Learning via Gradient Descent

N

E(w) = %Z(y(xn, ) ZW
i\f: ( Loy W tn) + AW

Choose w randomly, where w; ~ N(0, )
Repeat until w converges (i.e., | |lw—w_4|| <€)
Woig =W

Forj=0... M: N
Wj — Wj — CYVJE(W)




The Gaussian Distribution

1 1
N (@l o?) = o e { ~5 (e — 02}

Nl Nzl 0%) > 0

/ N (z|p,0?) dz =1
20 o




The Multivariate Gaussian

N, %) = iy s exp { =5 x-S - ) |

@

.CCQ‘




Gaussian Parameter Estimation

p(x) Likelihood function

N($n|ﬂ, 02)




Maximum (Log) Likelihood

N
1 N N
Inp (x|p, o?) :—2—2 —?IHOQ—?IH(QW>
1 & , 1¢
HML = N;xn IML ~ 77 nz::l(xn — HML)




Curve Fitting Re-visited




Maximum Likelihood

BE(w)

Determine WML by minimizing sum-of-squares error, F/(w).

1 N
E = N Z QBmWML _tn}




Predictive Distribution

p(t|z, W, Bur) = N (tly(z, wr), 51\_41L>




MAP: A Step towards Bayes

(M+1)/2
p(wla) = N(w|0,a 1) = (%) exp {—%WTW}

p(w|x,t,a, 3) o< p(t|x, w, B)p(w|a)

MIQ

N o
Z Y(xp, W tn}2 + §WTW

Determine WMAP by minimizing regularized sum-of-squares error, E(W) :




Bayesian Curve Fitting

p(tlx,x,t) = /p(t|x,w)p(w|x,t) dw = N (tjm(z), s*(z))
m(x) = Bp(@)TS Y Plan)tn  5°(x) =B+ p(x)TSe(x)

N
S —al+ 8 d@n)d@n)”  Slen) = (2%,....xM)"
n=1




Bayesian Predictive Distribution

p(tlz,x,t) = N (t|m(z), s*(z))




Model Selection

Cross-Validation

run 1

run 2

run 3

run 4




Curse of Dimensionality
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Curse of Dimensionality

Polynomial curve ﬁtting, M = 3

D D D

y X, W = Wo + szxz —+ Z waazz% + S‘ Y S‘wz]kxzxjxk

=1 5=1 =1 7=1 k=1

Gaussian Densities in
higher dimensions




