Support Vector Machines and Kernels

Doing *Really* Well with Linear Decision Surfaces

Adapted from slides by Tim Oates Cognition, Robotics, and Learning (CORAL) Lab University of Maryland Baltimore County

Outline

- Prediction
 - Why might predictions be wrong?
- Support vector machines
 - Doing really well with linear models
- Kernels
 - Making the non-linear linear

Supervised ML = Prediction

- Given training instances (x,y)
- Learn a model f
- Such that f(x) = y
- Use f to predict y for new x
- Many variations on this basic theme

Why might predictions be wrong?

- True Non-Determinism
 - Flip a biased coin
 - $p(heads) = \theta$
 - **Estimate** θ
 - If $\theta > 0.5$ predict heads, else tails
 - Lots of ML research on problems like this
 - Learn a model
 - Do the best you can in expectation

Why might predictions be wrong?

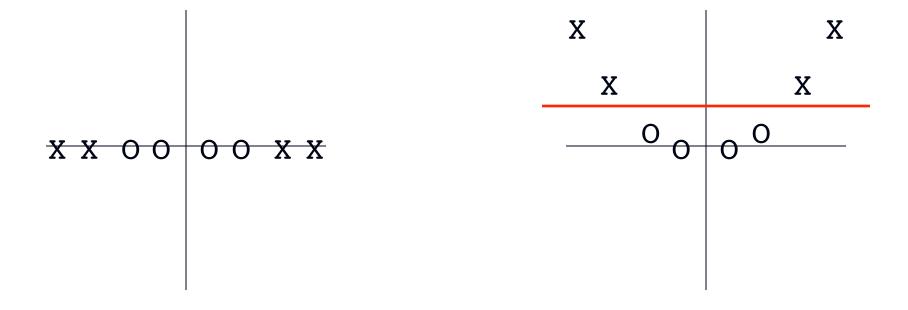
- Partial Observability
 - Something needed to predict y is missing from observation x
 - N-bit parity problem
 - x contains N-1 bits (hard PO)
 - x contains N bits but learner ignores some of them (soft PO)

Why might predictions be wrong?

- True non-determinism
- Partial observability
 - hard, soft
- Representational bias
- Algorithmic bias
- Bounded resources

Representational Bias

Having the right features (x) is crucial



Support Vector Machines

Doing *Really* Well with Linear Decision Surfaces

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

Linear Separators

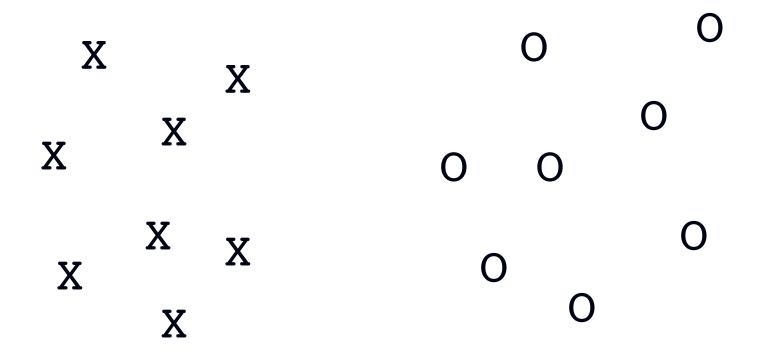
- Training instances
 - $\mathbf{x} \in \Re^n$
 - $y \in \{-1, 1\}$
- $\mathbf{w} \in \Re^{\mathbf{n}}$
- $b \in \Re$
- Hyperplane
 - <w, x>+b=0
 - $\mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 \dots + \mathbf{w}_n \mathbf{x}_n + \mathbf{b} = 0$
- Decision function
 - $f(x) = sign(\langle w, x \rangle + b)$

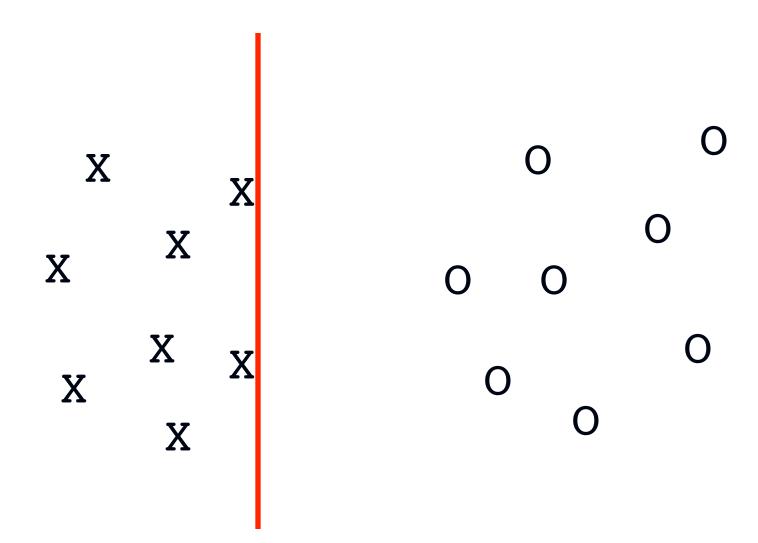
Math Review

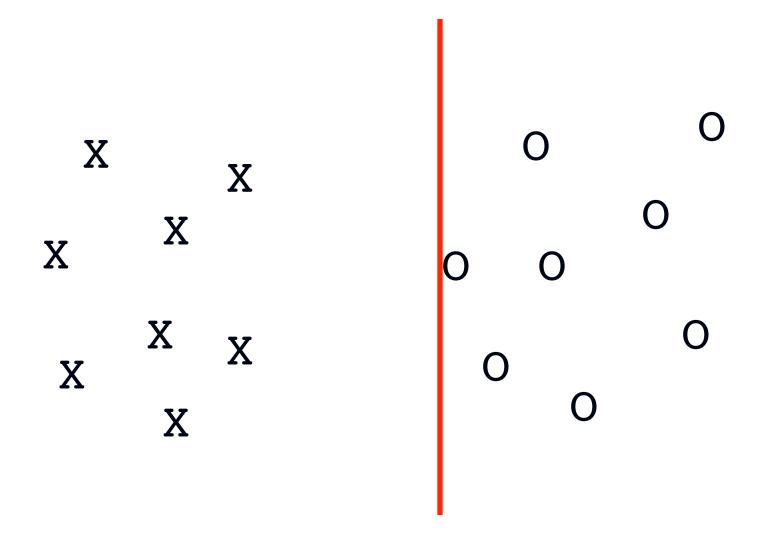
Inner (dot) product:

$$\langle a, b \rangle = a \cdot b = \sum a_i^* b_i$$

= $a_1 b_1 + a_2 b_2 + ... + a_n b_n$

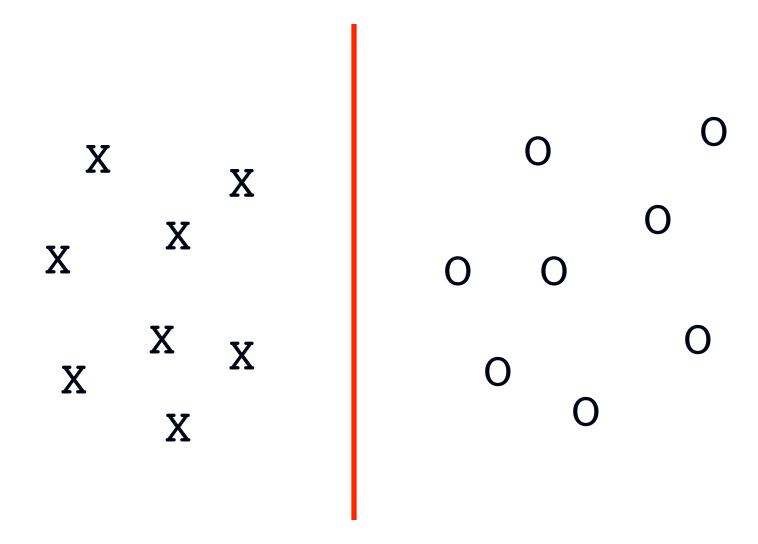




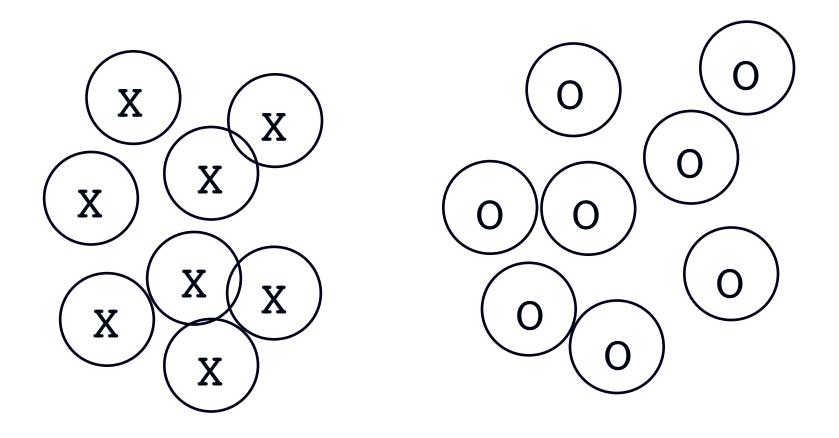




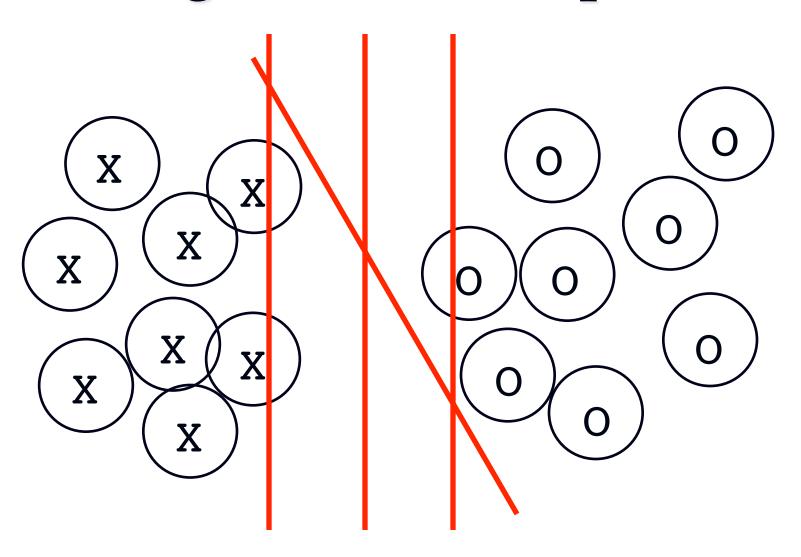
A "Good" Separator



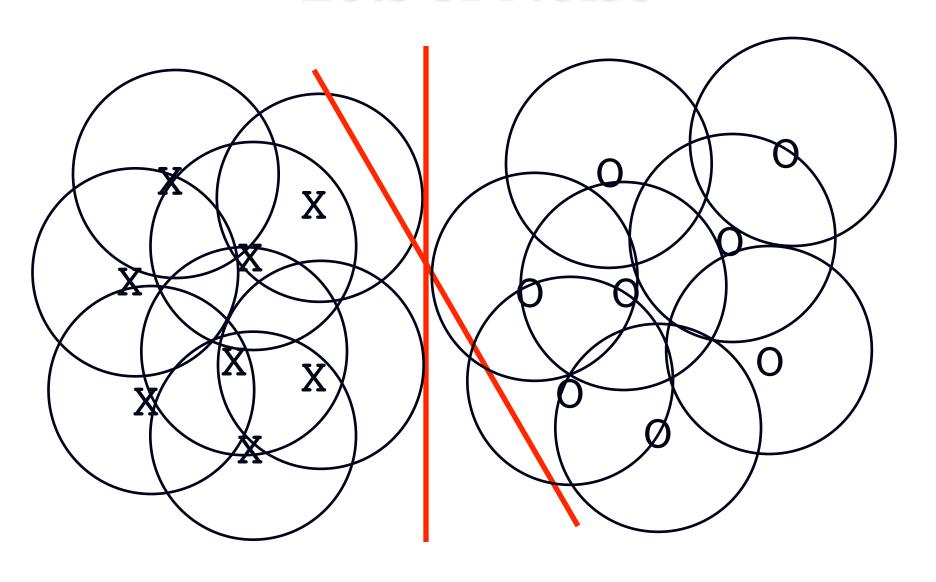
Noise in the Observations



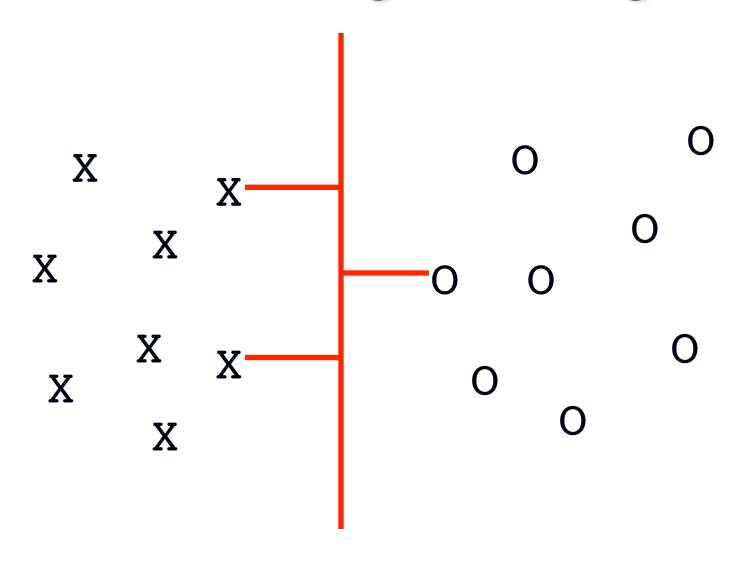
Ruling Out Some Separators



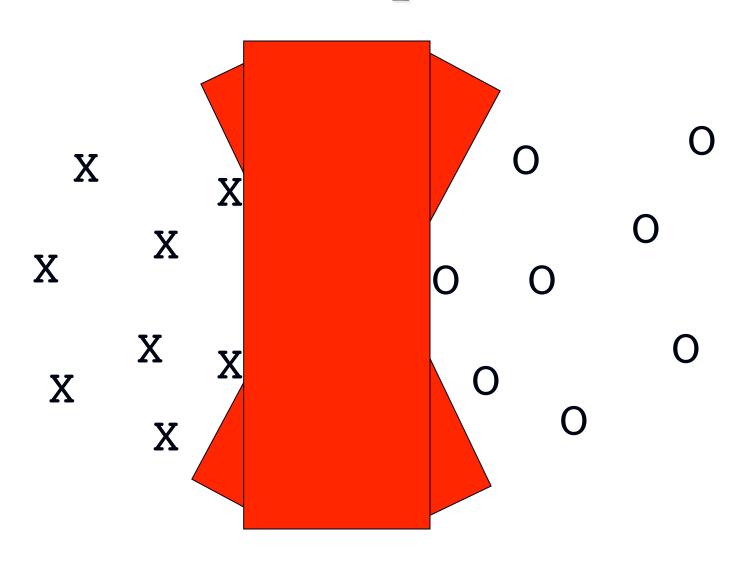
Lots of Noise



Maximizing the Margin



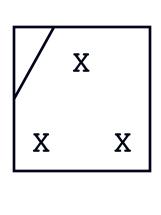
"Fat" Separators

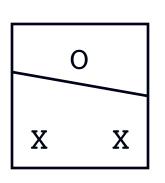


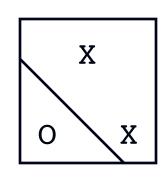
Why Maximize Margin?

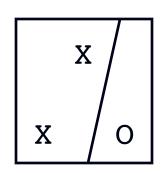
- Increasing margin reduces capacity
- Must restrict capacity to generalize
 - m training instances
 - 2^m ways to label them
 - What if function class that can separate them all?
 - Shatters the training instances
- VC Dimension is largest m such that function class can shatter some set of m points

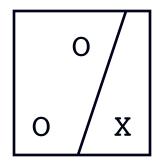
VC Dimension Example

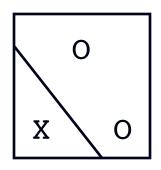


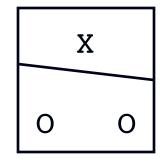


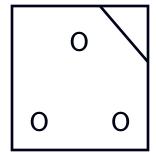










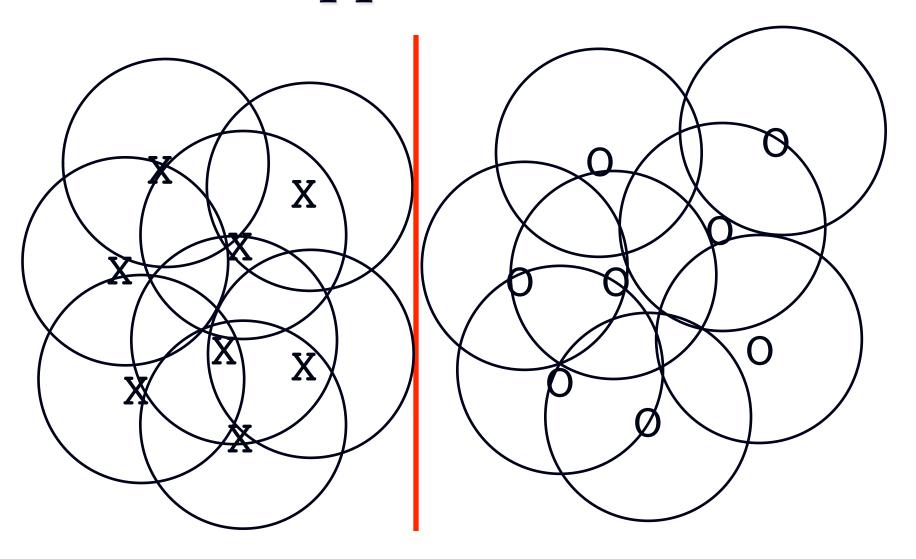


Bounding Generalization Error

- R[f] = risk, test error
- $R_{emp}[f] = empirical risk, train error$
- h = VC dimension
- m = number of training instances
- δ = probability that bound does not hold

$$R[f] \le R_{emp}[f] + \sqrt{\frac{1}{m} \left[h \left[ln \frac{2m}{h} + 1 \right] + ln \frac{4}{\delta} \right]}$$

Support Vectors



The Math

- Training instances
 - $\mathbf{x} \in \Re^n$
 - $y \in \{-1, 1\}$
- Decision function
 - $f(x) = sign(\langle w, x \rangle + b)$
 - $\mathbf{w} \in \Re^n$
 - b ∈ ℜ
- Find w and b that
 - Perfectly classify training instances
 - Assuming linear separability
 - Maximize margin

The Math

- For perfect classification, we want
 - $y_i (< w, x_i > + b) \ge 0 \text{ for all } i$
 - Why?
- To maximize the margin, we want
 - w that minimizes $|w|^2$

Dual Optimization Problem

- Maximize over α
 - $W(\alpha) = \sum_{i} \alpha_{i} 1/2 \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < x_{i'} x_{j} >$
- Subject to
 - $\alpha_i \ge 0$
 - $\sum_{i} \alpha_{i} y_{i} = 0$
- Decision function
 - $f(x) = sign(\Sigma_i \alpha_i y_i < x, x_i > + b)$

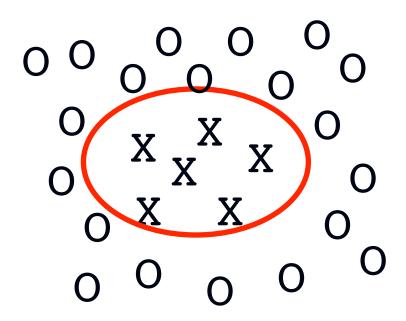
What if Data Are Not Perfectly Linearly Separable?

- Cannot find w and b that satisfy
 - $y_i (< w, x_i > + b) \ge 1 \text{ for all i}$
- Introduce slack variables ξ_i
 - $y_i (< w, x_i > + b) \ge 1 \xi_i \text{ for all } i$
- Minimize
 - $|w|^2 + C \sum \xi_i$

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick ...

What if Surface is Non-Linear?



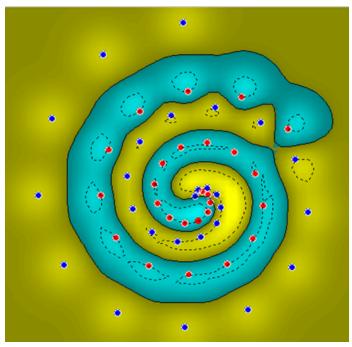
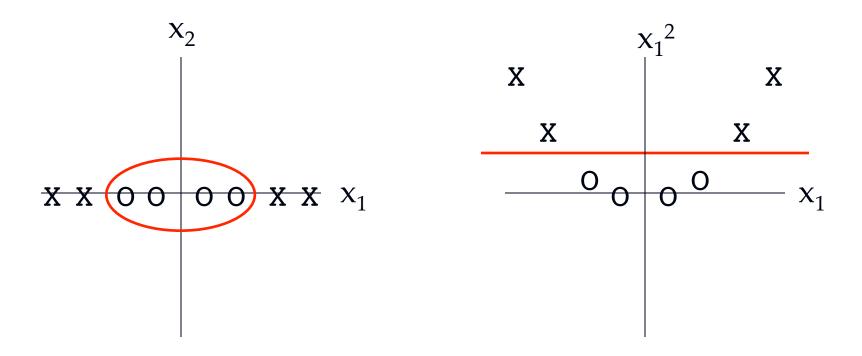


Image from http://www.atrandomresearch.com/iclass/

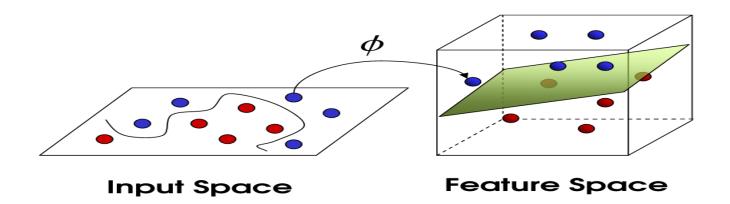
Kernel Methods

Making the Non-Linear Linear

When Linear Separators Fail



Mapping into a New Feature Space



$$\Phi: x \to X = \Phi(x)$$

$$\Phi(x_1, x_2) = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

- Rather than run SVM on x_i , run it on $\Phi(x_i)$
- Find non-linear separator in input space
- What if $\Phi(x_i)$ is really big?
- Use kernels to compute it implicitly!

 | Image from http://web.engr.oregonstate.edu/
 | afern/classes/cs534/

Kernels

- Find kernel K such that
 - $K(x_1, x_2) = \langle \Phi(x_1), \Phi(x_2) \rangle$
- Computing $K(x_1,x_2)$ should be efficient, much more so than computing $\Phi(x_1)$ and $\Phi(x_2)$
- Use $K(x_1,x_2)$ in SVM algorithm rather than $\langle x_1,x_2 \rangle$
- Remarkably, this is possible

The Polynomial Kernel

- $K(x_1, x_2) = \langle x_1, x_2 \rangle^2$
 - $x_1 = (x_{11}, x_{12})$
 - $\mathbf{x}_2 = (\mathbf{x}_{21}, \, \mathbf{x}_{22})$
- $< x_1, x_2 > = (x_{11}x_{21} + x_{12}x_{22})$
- $< x_1, x_2 > ^2 = (x_{11}^2 x_{21}^2 + x_{12}^2 x_{22}^2 + 2x_{11} x_{12} x_{21} x_{21} x_{22})$
- $\Phi(\mathbf{x}_1) = (\mathbf{x}_{11}^2, \, \mathbf{x}_{12}^2, \, \sqrt{2}\mathbf{x}_{11}\,\mathbf{x}_{12})$
- $\Phi(\mathbf{x}_2) = (\mathbf{x}_{21}^2, \mathbf{x}_{22}^2, \sqrt{2}\mathbf{x}_{21}\mathbf{x}_{22})$
- $K(x_1,x_2) = \langle \Phi(x_1), \Phi(x_2) \rangle$

The Polynomial Kernel

- $\Phi(x)$ contains all monomials of degree d
- Useful in visual pattern recognition
- Number of monomials
 - 16x16 pixel image
 - 10¹⁰ monomials of degree 5
- Never explicitly compute $\Phi(x)$!
- Variation $K(x_1, x_2) = (< x_1, x_2 > + 1)^2$

Kernels

- What does it *mean* to be a kernel?
 - $K(x_1,x_2) = \langle \Phi(x_1), \Phi(x_2) \rangle$ for some Φ
- What does it *take* to be a kernel?
 - The Gram matrix $G_{ij} = K(x_i, x_j)$
 - Positive definite matrix
 - $\sum_{ij} c_i c_j G_{ij} \ge 0 \text{ for } c_{i,} c_j \in \Re$
 - Positive definite kernel
 - For all samples of size m, induces a positive definite Gram matrix

A Few Good Kernels

- Dot product kernel
 - $K(x_1, x_2) = \langle x_1, x_2 \rangle$
- Polynomial kernel
 - $K(x_1,x_2) = \langle x_1,x_2 \rangle^d$ (Monomials of degree d)
 - $K(x_1,x_2) = (< x_1,x_2 > +1)^d$ (All monomials of degree 1,2,...,d)
- Gaussian kernel
 - $K(x_1, x_2) = \exp(-|x_1-x_2|^2/2\sigma^2)$
 - Radial basis functions
- Sigmoid kernel
 - $K(x_1, x_2) = \tanh(\langle x_1, x_2 \rangle + \vartheta)$
 - Neural networks
- Establishing "kernel-hood" from first principles is nontrivial

The Kernel Trick

"Given an algorithm which is formulated in terms of a positive definite kernel K_1 , one can construct an alternative algorithm by replacing K_1 with another positive definite kernel K_2 "

> SVMs can use the kernel trick

Using a Different Kernel in the Dual Optimization Problem

 For example, using the polynomial kernel with d = 4 (including lower-order terms).

Maximize over α

$$W(\alpha) = \sum_{i} \alpha_{i} - 1/2 \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < X_{i} >$$

Subject to

$$\alpha_i \ge 0$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Decision function

$$f(x) = sign(\Sigma_i \alpha_i y_i < x_i > + b)$$

$$(+1)^4$$

So by the kernel trick, These are kernels! we just replace them!

Exotic Kernels

- Strings
- Trees
- Graphs
- The hard part is establishing kernel-hood

Conclusion

- SVMs find optimal linear separator
- The kernel trick makes SVMs non-linear learning algorithms