Support Vector

Machines and Kernels

Doing Really Well with
Linear Decision Surfaces

Adapted from slides by Tim Oates
Cognition, Robotics, and Learning (CORAL) Lab

University of Maryland Baltimore County

Outline

Prediction
Why might predictions be wrong?

Support vector machines
Doing really well with linear models

Kernels

Making the non-linear linear

Supervised ML = Prediction

Given training instances (x,y)

Learn a model f

Such that f(x) =y

Use f to predict y for new x

Many variations on this basic theme

Why might predictions be wrong?

True Non-Determinism
Flip a biased coin
p(heads) =6
Estimate 0
If 6 > 0.5 predict heads, else tails
Lots of ML research on problems like this

Learn a model

Do the best you can in expectation

Why might predictions be wrong?

Partial Observability

Something needed to predict y is missing
from observation x
N-bit parity problem

x contains N-1 bits (hard PO)

x contains N bits but learner ignores some of them
(soft PO)

Why might predictions be wrong?

True non-determinism

Partial observability
hard, soft

Representational bias
Algorithmic bias
Bounded resources

Representational Bias

Having the right features (x) is crucial

Support Vector
Machines

Doing Really Well with Linear
Decision Surfaces

Strengths of SVMs

Good generalization in theory

Good generalization in practice

Work well with few training instances
Find globally best model

Efficient algorithms

Amenable to the kernel trick

Linear Separators

Training instances

X € Rn Math Review
y € {-1, 1} Inner (dot) product:

n <a,b>=a-b=}) a’b;
WER = a;b; + a,b, +...+a,b,
beNR
Hyperplane

<w,x>+b=0

WX + WoX, ... + W X, +b=0
Decision function

f(x) = sign(<w, x> + b)

Intuitions

Intuitions

Intuitions

Intuitions

A “Good” Separator

Noise in the Observations

© 6 ©
@ @@%

Ruling Out Some Separators

ore\BICES
@ ge» @@
Q@é’

Maximizing the Margin

“Fat” Separators

Why Maximize Margin?

Increasing margin reduces capacity

Must restrict capacity to generalize
m training instances
2™ ways to label them

What if function class that can separate them
all?

Shatters the training instances
VC Dimension is largest m such that

function class can shatter some set of m
points

VC Dimension Example

Bounding Generalization Error

R[f] = risk, test error

Remp[f] = empirical risk, train error
h = VC dimension

m = number of training instances

0 = probability that bound does not hold

1 2m 4
R[f] = Remp[f] + \/? |:h [lnT + 1] + lng]

The Math

Training instances
X € hn
y e -1, 1}
Decision function
f(x) = sign(<w,x> + b)
w E hn
beh

Find w and b that

Pertectly classity training instances
Assuming linear separability

Maximize margin

The Math

For pertfect classification, we want
y; (<w,x>+Db) >0 for all i
Why?

To maximize the margin, we want

w that minimizes | w |2

Dual Optimization Problem

Maximize over o

W(a) =2 0;-1/2 5 o o y; yi <X, x>
Subject to

o; =0

2 0;y; =0
Decision function

f(x) = sign(Z, o, y; <x, x,> + b)

What if Data Are Not Perfectly
Linearly Separable?

Cannot find w and b that satisfy
y, (<w,x>+b) >1 for all i

Introduce slack variables &,
y, (<w,x>+b)>1-E, foralli
Minimize
w2+ CZXE,

Strengths of SVMs

Good generalization in theory

Good generalization in practice

Work well with few training instances
Find globally best model

Efficient algorithms

Amenable to the kernel trick ...

What if Surface is Non-Linear?

Image from http:/ / www.atrandomresearch.com/iclass/

Kernel Methods

Making the Non-Linear Linear

When Linear Separators Fail

Mapping into a New Feature Space

Input Space Feature Space

D:x 2> X=d(x)
(I)(XllXZ) = (X1/X2/X12/X22/X1X2)

Rather than run SVM on x;, run it on ®(x;)
Find non-linear separator in input space
What if ®(x,) is really big?

Use kernels to compute it implicitly e o

Kernels

Find kernel K such that
K(x,%,) = < (), P(x,)>

Computing K(x;,x,) should be efficient,
much more so than computing ®(x;) and
D(x,)

Use K(x4,X%,) in SVM algorithm rather than
<X1,X,>

Remarkably, this is possible

The Polynomial Kernel

K(x,%,) = < X, Xy > 2
Xp = (X1, Xq2)
Xy = (X1, Xp)
<Xy, X > = (Xg9Xpp + X3pXp))
<Xy, Xp> % = (Xq1% Xg1” + Xqp7Xo0” + 2X41 X5 Xg
X))
D(x;) = (X117 X105 V2X41 X3p)
D(xy) = (X1 X7 V2Xp1 Xgp)
K(x{,%,) = < ®(x,), D(x,)>

The Polynomial Kernel

®(x) contains all monomials of degree d
Useful in visual pattern recognition

Number of monomials

16x16 pixel image

101 monomials of degree 5
Never explicitly compute ®(x)!
Variation - K(x;,x,) = (< X;, X,> + 1) 2

Kernels

What does it mean to be a kernel?

K(x{,%,) = < ®(x;), P(x,) > for some O
What does it take to be a kernel?
The Gram matrix G; = K(x; x;)
Positive definite matrix
266 G=0forg g EN
Positive definite kernel

For all samples of size m, induces a positive
definite Gram matrix

A Few Good Kernels

Dot product kernel
K(x4,%,) = < Xq,Xy >
Polynomial kernel
K(x{,%,) = < xq,%, >4 (Monomials of degree d)
K(xy,%,) = (< x4,X, > + 1) (All monomials of degree 1,2,...,d)
Gaussian kernel
K(xy,%,) = exp(- | x;-x, 12/20?)
Radial basis functions
Sigmoid kernel
K(x;,x,) = tanh(< x;,x, > + 9)
Neural networks

Establishing “kernel-hood” from first principles is non-
trivial

The Kernel Trick

“Given an algorithm which is
formulated in terms of a positive
definite kernel K;, one can construct
an alternative algorithm by replacing

K, with another positive definite
kernel K,”

» SVMs can use the kernel trick

Using a Different Kernel in the
Dual Optimization Problem

For example, using the polynomial kernel
with d =4 (including lower-order terms).

Maximize over o
W(a) =2 0;-1/2 % o o y; y: <Y X>
Subject to o

o. =0
2;0;y;=0
Decision function
f(x) = sign(Z; a, y, <¥x,>+ b)
7

Q

Exotic Kernels

Strings

Trees

Graphs

The hard part is establishing kernel-hood

Conclusion

SVMs find optimal linear separator

The kernel trick makes SVMs non-linear
learning algorithms

