Neural
Networks

Adapted from slides by Some material adapted
Tim Finin and from lecture notes by

Marie desJardins. Lise Getoor and Ron Parr

Neural function

Brain function (thought) occurs as the result of
the firing of neurons

Neurons connect to each other through synapses,
which propagate action potential (electrical
impulses) by releasing neurotransmitters

Synapses can be excitatory (potential-increasing)
or inhibitory (potential-decreasing), and have

varying activation thresholds

Learning occurs as a result of the synapses’
plasticicity: They exhibit long-term changes in
connection strength

There are about 10! neurons and about 1014
synapses in the human brain!

Biology of a neuron

Axonal arborization

< N ’)_/
Axon from another cell

-

Dendrite

Nucleus i »

Cell bedy or Soma

Brain structure

Different areas of the brain have different functions

— Some areas seem to have the same function in all humans (e.g.,
Broca s region for motor speech); the overall layout is generally
consistent

— Some areas are more plastic, and vary in their function; also, the
lower-level structure and function vary greatly
We don’ t know how different functions are “assigned” or
acquired

— Partly the result of the physical layout / connection to inputs
(sensors) and outputs (effectors)

— Partly the result of experience (learning)
We really don’ t understand how this neural structure

leads to what we perceive as “consciousness” or
thought

Artificial neural networks are not nearly as complex or
intricate as the actual brain structure

Comparison of computing power

INFORMATION CIRCA 2012 | Computer Human Brain
Computation Units 10-core Xeon: 10° Gates 10" Neurons

Storage Units 109 bits RAM, 10" bits disk | 10" neurons, 10 synapses
Cycle time 109 sec 103 sec

Bandwidth 10° bits/sec 10" bits/sec

 Computers are way faster than neurons...

* But there are a lot more neurons than we can reasonably
model in modern digital computers, and they all fire in
parallel

* Neural networks are designed to be massively parallel
* The brain is effectively a billion times faster

Neural networks

Output units

Hidden units

O Input units

Layered feed-forward network

Neural networks are made up of nodes or units,
connected by links

Each link has an associated weight and activation level

Each node has an input function (typically summing over
weighted inputs), an activation function, and an output

Model of a nheuron

a; = glin)

\
fnpaet o .\ Cuetpaes
€ -
Links Z / Links
/ e TR

Inpur Acriventon

Funcnon Funcnon

Qurpur

Neuron modeled as a unit i
weights on input unitj toi, W;;

netinput to unitiis:
in, = Ewﬁ . 0].

J

Activation function g() determines the neuron’ s output
— g() is typically a sigmoid

— output is either 0 or 1 (no partial activation)
7

“Executing” neural networks

* Input units are set by some exterior function (think
of these as sensors), which causes their output links

to be activated at the specified level

 Working forward through the network, the input
function of each unit is applied to compute the input

value
— Usually this is just the weighted sum of the activation on

the links feeding into this node
* The activation function transforms this input
function into a final value

— Typically this is a nonlinear fun“ction, ofteg a sigmoid
function corresponding to the threshold of that node

Learning rules

* Rosenblatt (1959) suggested that if a target
output value is provided for a single neuron
with fixed inputs, can incrementally change
weights to learn to produce these outputs
using the perceptron learning rule

—assumes binary valued input/outputs
—assumes a single linear threshold unit

Perceptron learning rule

* If the target output for unitiis t;

Wi=W;t Nt - Oi)Oj
* Equivalent to the intuitive rules:
— If output is correct, don’ t change the weights
— If output is low (0,=0, t.=1), increment weights for all
the inputs which are 1
— If output is high (0,=1, t.=0), decrement weights for all
inputs which are 1

— Must also adjust threshold. Or equivalently assume
there is a weight w,, for an extra input unit that has an

output of 1.

Perceptron learning algorithm

 Repeatedly iterate through examples adjusting
weights according to the perceptron learning rule
until all outputs are correct

— Initialize the weights to all zero (or random)
— Until outputs for all training examples are correct
 for each training example e do
—compute the current output o;

—compare it to the target t; and update
weights
* Each execution of outer loop is called an epoch
* For multiple category problems, learn a separate

perceptron for each category and assign to the class
whose perceptron most exceeds its threshold

Representation limitations of a
perceptron

* Perceptrons can only represent linear
threshold functions and can therefore only
learn functions which linearly separate the

data.

— i.e., the positive and negative examples are
separable by a hyperplane in n-dimensional space

<WX>-06=0
> 0 on this side

< 0 on this side

Perceptron learnability

* Perceptron Convergence Theorem: If there is
a set of weights that is consistent with the
training data (i.e., the data is linearly
separable), the perceptron learning algorithm
will converge (Minicksy & Papert, 1969)

* Unfortunately, many functions (like parity)
cannot be represented by LTU

Learning: Backpropagation

* Similar to perceptron learning algorithm, we
cycle through our examples

—if the output of the network is correct, no
changes are made

—if there is an error, the weights are adjusted
to reduce the error

e The trick is to assess the blame for the error
and divide it among the contributing weights

Output layer

* Asin perceptron learning algorithm, we want
to minimize difference between target output
and the output actually computed

W, =W, + axa; xErr,xg'(in;)
]l]l] | |
activation of / / \

hidden unit j (T,— 0O, derivative
. of activation
A =Err xg(in) function

WJ-i =WJ-i+0c><aj><Ai

Hidden layers

* Need to define error; we do error backpropagation.

* |Intuition: Each hidden node j is “responsible” for
some fraction of the error A, in each of the output
nodes to which it connects.

* A, divided according to the strength of the
connection between hidden node and the output
node and propagated back to provide the A, values

for the hidde - .
A; =g(ing) > WA,
)

update rule: W, = W, + axI, x A,

Backprogation algorithm

 Compute the A values for the output units
using the observed error

e Starting with output layer, repeat the
following for each layer in the network, until
earliest hidden layer is reached:

—propagate the A values back to the previous
layer

—update the weights between the two layers

Backprop issues

» “Backprop is the cockroach of machine
learning. It s ugly, and annoying, but you just
can’ tgetrid of it.”

-Geoff Hinton

* Problems:
—black box
—local minima

Restricted Boltzmann Machines
and Deep Belief Networks

Slides from: Geoffrey Hinton, Sue Becker, Yann Le Cun,
Yoshua Bengio, Frank Wood

Motivations

Supervised training of deep models (e.g. many-layered
NNets) is difficult (optimization problem)
Shallow models (SVMs, one-hidden-layer NNets,

boosting, etc...) are unlikely candidates for learning
high-level abstractions needed for Al

Unsupervised learning could do “local-learning” (each
module tries its best to model what it sees)

Inference (+ learning) is intractable in directed graphical
models with many hidden variables

Current unsupervised learning methods don’ t easily
extend to learn multiple levels of representation

Belief Nets

A belief net is a directed acyclic
graph composed of stochastic
variables.

Can observe some of the
variables and we would like to
solve two problems:

The inference problem: Infer
the states of the unobserved
variables.

The learning problem: Adjust
the interactions between
variables to make the network
more likely to generate the
observed data.

stochastic
hidden
cause

visible
effect

Use nets composed of layers of
stochastic binary variables with
weighted connections. Later, we will
generalize to other types of variable.

Stochastic binary neurons

e These have a state of 1 or O which is a stochastic function of
the neuron’ s bias, b, and the input it receives from other
neurons.

1

1+ exp(-b; - Es] i)

p(s; =1)

ps; =1) 0>

Stochastic units

Replace the binary threshold units by binary stochastic units
that make biased random decisions.

— The temperature controls the amount of noise.

— Decreasing all the energy gaps between configurations is
equivalent to raising the noise level.

(5i-1) = 1 1
PRo 1+e_EijWij/T 1+ AT

temperature

Energy gap = AL,

l

= F(s;=0)— E(s;=1)

The Energy of a joint configuration

binary state of unitiin joint
configuration v, h

!
E(v,h)= — E s"b, — ES s w

‘ iCunits ‘ i<j ‘

Energy with configuration v bias of weight between

on the visible units and h unit i unitsiand j

on the hidden units
indexes every non-identical

pair of i and j once

Weights = Energies = Probabilities

* Each possible joint configuration of the visible
and hidden units has an energy
— The energy is determined by the weights and biases

(as in a Hopfield net).

* The energy of a joint configuration of the visible
and hidden units determines its probability:

—-E(v,h

plv,) o< e H 0

* The probability of a configuration over the visible

units is found by summing the probabilities of all
the joint configurations that contain it.

Restricted Boltzmann Machines

Restrict the connectivity to make learning
easier. hidden

— Only one layer of hidden units.
e Deal with more layers later
— No connections between hidden units.

In an RBM, the hidden units are conditionally
independent given the visible states.

— So can quickly get an unbiased sample visible
from the posterior distribution when
given a data-vector.

— This is a big advantage over directed
belief nets

Restricted Boltzmann Machines

* |nan RBM, the hidden units are
conditionally independent given the
visible states. It only takes one step to
reach thermal equilibrium when the
visible units are clamped.

— Can quickly get the exact value of :

hidden

<Sl'Sj >V

visible

A picture of the Boltzmann machine learning
algorithm for an RBM

<SiS
a fantasy

t=0 t=1 t=2 t = infinity
Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

0 o0
Aw;; = 8(<SiSj> — <5;8 ;>)

Contrastive divergence learning:
A quick way to learn an RBM

Start with a training vector on the
visible units.

Update all the hidden units in parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1 Update the hidden units again.
data reconstruction
Aw.. = £(<s;s <5:8:>')
Yy J =]

This is not following the gradient of the log likelihood. But it works well.

When we consider infinite directed nets it will be easy to see why it works.

How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary 50 binary
feature feature
neurons neurons
Increment weights Decrement weights
between an active pixel between an active pixel
and an active feature and an active feature
16 x 16 16 x 16
pixel pixel
image image
data reconstruction

(reality) (better than reality)

Using an RBM to learn a model of a digit class
- o e B Reconstru.ct'ions by
EJH Z !‘i s

Reconstructions by
model trained on
3’s

100 hidden units
(features)

256 visible

units (pixels)
data reconstruction

The final 50 X 256 weights

]
s o
r!
[~ =
]
e}
=
=
El
i u
v ™
i - = =0
i
.
-

Each neuron grabs a different feature.

How well can we reconstruct the digit images
from the binary feature activations?

Reconstruction
from activated
Data binary features

New test images from
the digit class that the
model was trained on

Reconstruction
from activated
Data binary features

! !

Images from an unfamiliar
digit class (the network
tries to see every image as
a2)

Deep Belief Networks

Divide and conquer multilayer learning

* Re-representing the data: Each time the base
learner is called, it passes a transformed
version of the data to the next learner.

— Can we learn a deep, dense DAG one layer at a
time, starting at the bottom, and still guarantee
that learning each layer improves the overall
model of the training data”

* This seems very unlikely. Surely we need to know the
weights in higher layers to learn lower layers?

Multilayer contrastive divergence

e Start by learning one hidden layer.
 Then re-present the data as the activities of
the hidden units.

— The same learning algorithm can now be applied
to the re-presented data.

* Can we prove that each step of this greedy
learning improves the log probability of the
data under the overall model?

— What is the overall model?

Learning a deep directed
network

* First learn with all the weights tied

— This is exactly equivalent to learning
an RBM

— Contrastive divergence learning is
equivalent to ignoring the small
derivatives contributed by the tied
weights between deeper layers.

ho
I w
vO

Then freeze the first layer of weights in
both directions and learn the remaining
weights (still tied together).

— This is equivalent to learning
another RBM, using the aggregated
posterior distribution of hO as the
data.

vl
| 4
ho

A simplified version with all hidden layers the same size

e The RBM at the top can be viewed

as shorthand for an infinite directed h3
net.
* When learning W1 we can view the I W,
, : . _ 3
model in two quite different ways:
— The model is an RBM composed h2
of the data layer and h1.
— The model is an infinite DAG WZTI 1 /2
with tied weights.
e After learning W1 we untie it from h1

the other weight matrices. T"‘ 1 W
. Wi 1
We then learn W2 which is still tied

to all the matrices above it.

A neural network model of digit recognition

The top two layers form a

restricted Boltzmann machine 2000 top-level units

whose free energy landscape

models the low dimensional I I

manifolds of the digits.

The valleys have names: 10 label units >00 units

11

The model learns a joint density for labels P
and images. To perform recognition we can
start with a neutral state of the label units " 1
and do one or two iterations of the top- "
level RBM. oixel
Or we can just compute the free energy of Image

the RBM with each of the 10 labels

Show the movie of the network
generating digits

(available at www.cs.toronto/~hinton)

