Review

¢ Expressions and operators

1/31/2012

Coding styles
* Headers
¢ Comments

¢ Indentation
¢ Parentheses

* lteration
— while-loop
— for-loop
text()

e Strings can be drawn on a sketch using the text() function.

¢ Can set text position, font, size, alignment, ...
¢ Font files are loaded from the data folder.

// Set attributes
textSize(sizeInPixels) ;
textAlign({LEFT | CENTER | RIGHT}
[, {TOP, BOTTOM, CENTER, BASELINE}]);
£i11(color);

// Render text
text (string, X, Y);
text (string, X, Y, width, height);

¢ Spacing

// text

void setup() {
size (500, 500);
noLoop () ;

void draw() {
// bounding box
stroke (0) ;
£i11(255) ;
rect (50, 50, 400, 400);

// text options

£111(0) ; // black text

text ("Default", 50, 50, 400, 400);
textAlign (CENTER) ;

text ("CENTER", 50, 50, 400, 400);
textAlign (RIGHT) ;

text ("RIGHT", 50, 50, 400, 400);
textAlign (CENTER, CENTER);

text ("CENTER-CENTER", 50, 50, 400, 400);
textAlign (RIGHT, BOTTOM)

text ("RIGHT-BOTTOM", 50, 50, 400, 400);
textAlign (LEFT, BOTTOM) ;

text ("LEFT-BOTTOM", 50, 50, 400, 400);

Iteration

Repetition of a program block

¢ Iterate when a block of code is to repeated multiple
times.

Options
e while-loop
* for-loop

Iteration: while-loop

while (boolean expression) {
statements;
// continue;
// break;

* Statements are repeatedly executed while the boolean
expression remains true.

¢ To break out of a while loop, call break;
¢ To continue with next iteration, call continue;
* Alliterations can be written as while-loops.

1/31/2012

Iteration: for-loop

for (initialization; continuation test; update)

{

statements;
// continue; // Continues with next iteration
// break; // Breaks out of loop

¢ Akind of iteration construct

¢ initialization, continuation test and increment commands are
part of statement

¢ To break out of a loop, call break;
¢ To continue with next iteration step, call continue;
¢ All for loops can be translated to equivalent while loops

void mousePressed() f

for (int i = 0; i < 10; i++){

print(i);
}

println();

}

void draw() { }

void mousePressed() {
for (int i = 0; i < 10; i++) {
=)

=0; i
if (1% 2 == 1) continue;
print(i);

println();
}
void draw() { }

Functions Informally

¢ A function is like a subprogram, a small program inside of a
program.

¢ The basic idea — we write a sequence of statements and then
give that sequence a name. We can then execute this sequence
at any time by referring to the name.

¢ Function definition: this is where you create a function and
define exactly what it does

¢ Function call: when a function is used in a program, we say the
function is called.

¢ A function can only be defined once, but can be called many
times.

Function Examples
void setup() { .. }

void draw() { ..}

void line(float x1, float yl, float x2, float y2) { .. }
.. and other graphic functions

float float(..)
.. and other type-conversion functions

.. etc.

Functions

Modularity
— Functions allow the programmer to break down larger
programs into smaller parts.

— Promotes organization and manageability.

Reuse

— Enables the reuse of code blocks from arbitrary locations
in a program.

Function Parameters

« Parameters (arguments) can be “passed in” to function and
used in body.

¢ Parameters are a comma-delimited set of variable declarations.

¢ Parameters act as input to a function.

¢ Passing parameters provides a mechanism to execute a function
with many different sets of input

¢ We can call a function many times and get different results by
changing its parameters.

What happens when we call a function?

¢ Execution of the main (calling) program is
suspended.

¢ The argument expressions are evaluated.

¢ The resulting values are copied into the
corresponding parameters.

¢ The statements in the function's body are executed
in order.

e Execution of the main program is resumed when a
function exits (finishes).

1/31/2012

More Examples

** This function squares a number

** Inputs: a value to be squared

** Outputs: returns the square of the number
** provided

** Function: FindMinimum ()

** Finds the minimum of two integers

** Inputs: integers nl1 and n2 to be compared
** Outputs: returns the smaller of n1 and n2.

/
double square (double n) {
return n*n;

}

/
int findMinimum (int n1, int n2) {
int min;
if(n1<n2) {
min=nl;
}
else {
min =n2;
}
return min;

}

Functions that return values

¢ The return value of a function is the output of a function.
¢ A function evaluates to its return value.

¢ Function must return a value whose type matches the function
declaration.

return type function name(argument_decl_list) {
statements;
return value;

Variable Scope

The part of the program from which a variable can

be accessed.

Rules:

1. Variables declared in a block are only accessible

within the block.

2. Variables declared in an outer block are accessible

from an inner block.

3. Variables declared outside of any function are
considered global (available to all functions).

Variable Lifetime

— Variables cannot be referenced before they are
declared.
— Variables can be declared in...
* the global scope
« the body of a function or constructor
* the arguments of a function or constructor
« a statement block (for, while, if, ...).
— Avariable is created and initialized when a program
enters the block in which it is declared.
— Avariable is destroyed when a program exists the
block in which it was declared.

int vl = 1;

void setup()
int v2 = 2;

v
(

//println("vs="

+ str(vs));

int v3 = 6;
println("v3=" + str(v3));

aFunction (v2) ;

}

void aFunction(int vs) {
println(M------------- ")
println("vi=" + str(vi));
//println("v2=" + str(v2));
//println("v3=" + str(v3));
//println("vé=" + str(v4));
println("v5=" + str(v5));

void draw() { }

¢ What is printed?

¢ What happens if the second v3
declaration is removed?

¢ What would happen if the v5
print statement is executed?

¢ What would happen if
commented statements in
aFunction were called?

