
CMSC	B113	Fall	2020	Exam	#1	-	Solutions

Note	that	in	some	cases,	there	are	multiple	possible	correct	answers.

Part	1:	Syntax	(1	point	each;	15	points	total)

In	the	space	provided,	write	the	Java	instruction	that	would	do	each	of	the	following.	Your	code	
must	be	syntactically	correct;	no	partial	credit	will	be	awarded.

(1.1)	Declare,	but	do	not	initialize,	an	int	variable	named	k.

int	k;

(1.2)	Set	the	value	of	the	variable	k	(from	above)	to	5.

k	=	5;	

(1.3)	Declare	a	double	variable	named	m	and	initialize	it	to	37.8;	do	this	as	a	single	instruction.

double	m	=	37.8;

(1.4)	Increment	the	value	of	the	variable	m	(from	above)	by	the	value	of	the	variable	k	(from	
above).

m	=	m	+	k;		//	or	m	+=	k;	note	that	casting	is	not	necessary	since	k	is	“promoted”	to	a	double

(1.5)	Convert	the	value	of	m	to	an	int	and	then	store	its	value	in	k;	do	this	as	a	single	instruction.

k	=	(int)	m;

(1.6)	Set	the	value	of	the	variable	m	to	the	square	root	of	the	variable	k.

m	=	Math.sqrt(k);

(1.7)	Set	the	value	of	the	variable	k	to	be	a	random	integer	in	[0,	5],	i.e.	between	0	and	5,	
inclusive.

k	=	(int)(Math.random()	*	6);

(1.8)	Assume	you	have	int	variables	a,	b,	and	c.	Set	the	value	of	the	variable	k	to	be	equal	to	a	
times	the	sum	of	b	and	c;	do	this	as	a	single	instruction.

k	=	a	*	(b	+	c);	//	k	=	a	*	b	+	c	is	incorrect	because	it	would	first	multiply	a	times	b

(1.9)	Assume	you	have	boolean	variables	x	and	y.	Declare	a	boolean	variable	n	and	initialize	it	
so	that	its	value	is	true	if	both	x	and	y	are	true,	but	is	false	otherwise;	do	this	as	a	single	
instruction.

boolean	n	=	x	&&	y;

(1.10)	Assume	you	have	an	int	variable	p.	Set	the	value	of	n	(from	above)	to	be	true	if	p	is	even	
and	false	if	p	is	odd;	do	this	as	a	single	instruction.

n	=	p	%	2	==	0;

(1.12)	Declare	and	initialize	a	variable	called	nums	as	an	array	of	10	ints.

int[]	nums	=	new	int[10];	//	int	nums[]	=	new	int[10]	is	okay,	too

(1.13)	Set	the	element	at	index	#5	of	the	nums	array	(from	above)	to	113.

nums[5]	=	113;	//	some	students	used	nums[4];	that	is	the	“fifth	element”	of	the	array,	but	not	
the	one	at	index	#5

(1.14)	Set	the	last	element	of	the	nums	array	to	be	equal	to	8.

nums[9]	=	8;	//	or	nums[nums.length-1]	=	8	would	work,	too;	note	that	nums[10]	would	be	
outside	the	bounds	of	the	array

(1.15)	Assume	you	have	an	array	named	vals.	Set	the	value	of	the	variable	k	(from	above)	to	the	
number	of	elements	in	the	vals	array.

k	=	vals.length;

Part	2:	Analysis	

(2.1)	What	are	the	values	of	x	and	y	after	the	following	code	is	run,	i.e.	after	line	18	is	reached?	
Note	that	the	line	numbers	on	the	left	are	not	part	of	the	program.

Line	3	evaluates	to	false,	then	line	6	evaluates	to	false,	so	there	is	no	change	there.

Then	10	evaluates	to	true	because	y	is	1,	and	11	evaluates	to	true	because	x	is	0.

Line	12	sets	y	to	x	+	z	=	0	+	0	=	0.

Line	14	sets	x	to	2.

At	the	end,	x	=	2	and	y	=	0

(2.2)	How	many	times	is	“Hello!”	printed	in	the	following	code?	Note	that	the	line	numbers	on	
the	left	are	not	part	of	the	program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int	x	=	0,	y	=	1,	z	=	0;

if	(x	>=	y)	{

	 z	=	1;

}

else	if	(z	==	1)	{

	 x	=	y;

}

if	(y	==	1)	{

	 if	(x	==	0	||	z	==	0)	{

	 	 y	=	x	+	z;

	 }

	 x	=	2;	 	 	

}

else	{

	 x	=	5;

}

• For	the	first	iteration	of	the	outer	loop,	i	is	0	so	the	inner	loop	runs	five	times,	for	j	
ranging	from	0	to	4,	inclusive.

• For	the	second	iteration	of	the	outer	loop,	i	is	1	so	the	inner	loop	runs	four	times,	for	j	
ranging	from	1	to	4,	inclusive.

• For	the	third	iteration	of	the	outer	loop,	i	is	2	so	the	inner	loop	runs	three	times,	for	j	
ranging	from	2	to	4,	inclusive.

• For	the	fourth	iteration	of	the	outer	loop,	i	is	3	so	the	inner	loop	runs	two	times,	for	j	
ranging	from	3	to	4,	inclusive.

• For	the	fifth	iteration	of	the	outer	loop,	i	is	4	so	the	inner	loop	runs	once,	with	j	=	4.

At	that	point	the	outer	loop	stops,	and	“Hello!”	has	been	printed	5+4+3+2+1	=	15	times.

1

2

3

4

5

6

7

8

9

10

int	n	=	5;

	 	

for	(int	i	=	0;	i	<	n;	i++)	{

	 	 	

	 for	(int	j	=	i;	j	<	n;	j++)	{

	 	 	 	

	 	 System.out.println("Hello!");

	 }

	 	 	

}

(2.3)	Consider	the	following	algorithm:	assuming	that	ints	a	and	b	have	been	declared	and	
initialized:

1.	declare	an	int	called	c	and	initialize	it	to	0

2.	as	long	as	a	is	greater	than	or	equal	to	b,	do	the	following:

					1.	increment	c

					2.	set	a	to	be	equal	to	a	minus	b

Implement	the	above	algorithm	in	Java.	You	do	not	have	to	write	an	entire	program,	just	the	
part	described	above.

int	c	=	0;

while	(a	>=	b)	{	

				c	=	c	+	1;	//	or	c++;

				a	=	a	–	b;

}

After	executing	this	code,	what	is	the	value	of	c	in	terms	of	a	and	b?	You	can	describe	it	in	
English	or	as	a	Java	expression.

c	equals	a	divided	b	(as	ints),	i.e.	a	/	b

Part	3:	Modifying	Code

(3.1)	Assume	that	A	and	B	are	int	arrays	that	have	been	declared	and	initialized,	and	that	each	
element	in	A	is	distinct,	and	that	each	element	in	B	is	distinct.	The	following	code	is	attempting	
to	count	the	number	of	elements	that	A	and	B	have	in	common;	note	that	the	line	numbers	on	
the	left	are	not	part	of	the	program.

There	are	exactly	two	errors	in	this	code	that	would	cause	it	not	to	compile.	In	the	space	below,	
identify	the	line	numbers	on	which	the	errors	occur,	and	how	you	would	fix	them	so	that	the	
code	works	as	expected.

• Line	2:	count	should	be	initialized	to	zero,	i.e.	int	count	=	0;

• Line	7:	should	use	double-equals	to	compare	the	values,	i.e.	if	(a	==	b)	{	

(3.2)	In	the	space	below,	rewrite	the	following	code	so	that	it	maintains	the	same	behavior	but	
uses	a	while-loop	instead	of	a	for-loop.	You	can	assume	that	the	variables	n,	k,	and	vals	have	all	
been	declared	and	initialized:

for	(int	i	=	0;	i	<=	n;	i++)	{

			vals[i]	=	Math.pow(k,	i);

}

int	i	=	0;

while	(i	<=	n)	{

				vals[i]	=	Math.pow(k,	i);

				i++;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

int	count;

	 	

for	(int	a	:	A)	{

	 	 	

	 for	(int	b	:	B)	{

	 	 	 	

	 	 if	(a	=	b)	{

	 	 	 count	+=	1;

	

	 	 }

	 }	 	 	

}

(3.3)	In	the	space	below,	rewrite	the	following	code	so	that	it	maintains	the	same	behavior	but	
uses	if-else	statements	instead	of	a	switch	statement.	You	can	assume	that	the	variable	x	has	
been	declared	as	an	int	and	has	been	initialized.

int	a;

switch	(x)	{

				case	0:

								a	=	1;

								break;

				case	1:

								a	=	0;

								break;

				default:

								a	=	-1;

}

int	a;

if	(x	==	0)	{

				a	=	1;

}

else	if	(x	==	1)	{

				a	=	0;

}

else	{

				a	=	-1;

}

Part	4:	Writing	Code

(4.1)	Assume	that	nums	is	an	int	array	that	has	been	declared	and	initialized.	Write	code	that	
would	display	the	elements	of	nums	in	reverse	order	using	System.out.println.	That	is,	it	should	
first	display	the	last	element,	then	the	second-to-last,	and	so	on.	You	do	not	need	to	write	an	
entire	program,	just	the	code	that	performs	this	operation.

for	(int	i	=	nums.length	–	1;	i	>=	0;	i--)	{

				System.out.println(nums[i]);

}

(4.2)	Write	a	complete	Java	program	called	Average	that	takes	one	or	more	doubles	as	its	
runtime	arguments	and	displays	the	average	of	the	positive	values,	i.e.	the	ones	that	are	greater	
than	zero.

For	instance:

java Average 2.2 0.0 -4.5 3.5
should	display	2.85	since	it	is	the	average	of	the	two	positive	values,	2.2	and	3.5.

Your	program	can	assume	that	at	least	one	of	the	runtime	arguments	is	a	positive	number	and	
that	all	runtime	arguments	represent	valid	doubles.	You	may	assume	that	there	are	exactly	4	
runtime	arguments.

public	class	Average	{

	 public	static	void	main(String[]	args)	{

	 	 double	sum	=	0;

	 	 int	count	=	0;

	 	 for	(int	i	=	0;	i	<	4;	i++)	{

	 	 	 double	value	=	Double.parseDouble(args[i]);

	 	 	 if	(value	>	0)	{

	 	 	 	 sum	=	sum	+	value;

	 	 	 	 count	=	count	+	1;

	 	 	 }

	 	 }

	 	 System.out.println(sum/count);

	 }

}

