
Nov 15

Classes
and Arrays

equality
• Strings and all instances of classes

have two ways to compare to each
other

• ==

• compares pointers!

• .equals()

• compares strings

public class Equality {

 public static void main(String[] args) {

 String s = new String("this");

 String t = new String("that");

 System.out.println("s == t " + (s == t));

 System.out.println("s.equals(t) " + s.equals(t));

 String ss = s;

 System.out.println("s==ss " + (s == ss));

 System.out.println("s.equals(ss) " + s.equals(ss));

 ss = new String("this");

 System.out.println("s==ss " + (s == ss));

 System.out.println("s.equals(ss) " + s.equals(ss));

 }

}

and memory

Aliases
• Alias: When 2 things point at the same thing

•String ss = new String("this is");  
String tt = ss;

• Strings are immutable

• The internal memory (state) is not allowed to change

• so aliases are not very obvious

• Arrays are a lot like object instances

•int[] ss = new int[3]; // [0,0,0]  
int[] tt = ss; // tt points to same memory as ss  
tt[0]=42;  
ss[1]=99; // [42,99,0] for both ss and tt

substring()

• There are lots more
methods on String

public class FunWithStrings2 {

 public static void main(String[] args) {

 String ss ="The quick brown fox jumps.";

 System.out.println(ss.substring(4, 9));

 System.out.println(ss.substring(ss.indexOf('f'), ss.indexOf('f')+3));

 System.out.println(ss.substring(ss.indexOf('j')));

 }

}

Improvable,

worth it??

Activity
• What is the longest prefix shared by

any two strings on the command line?

• Simpler: what is the longest prefix
shared by the first string on the
command line with any other string?

• Does the first string have the same
first letter as any other?

• Does the first string have the same
first 2 letters?

java Activity17 abcdef sdfg adfgh absdfg abcfff sdfghy

Just first: 3

ALL: 4

Look at the methods on String.

There is a handy one: startsWith

Class Instances and Arrays
public class CArray {

 public static void main(String[] args) {

 double dd;

 double dd0 = 0.0; // does this mean "I do not know yet?"

 System.out.println("dd" + dd);

 double[] dA = new double[3];

 for (int i = 0; i < dA.length; i++) {

 System.out.println("dA + " + i + " " + dA[i]);

 }

 String ss;

 String ssb = ""; // does this mean "I do not know yet

 System.out.println("ss <<" + ss + ">>");

 String[] ssA = new String[3];

 for (int i = 0; i < ssA.length; i++) {

 System.out.println("ssA " + i + " " + ssA[i]);

 }

 }

}

 error: variable dd might not have been
initialized

 error: variable ss might not have been
initialized

Java: definite assignment

dd0.0
dA 0 0.0
dA 1 0.0
dA 2 0.0
ss
ssA 0 null
ssA 1 null
ssA 2 null

Null

• Null is

• a default value for class instances

• String aaa = null;

• Any variable holding an instance of a class can be set to "null"

• Why??

• temporary value for a variable before it’s initialized

• to indicate that the object does not exist (yet)

• a method can return null to signal that there was no result from the operation

• we can pass null to a method that takes an object as a parameter to indicate “no object”

the default

Null

• But null is literally Nothing

• You cannot do anything with it

• if you try you will get a "Null Pointer Exception"

• One of the most common runtime errors.

• Tony Hoare originated the idea (and named it null) in 1964

• "my billion dollar mistake"

• underestimate

is evil??

Static and non Static

• static methods belong to the class itself

• you do not need an instance to run them!

• for instance every method you have written for this class

• Math.pow(2,3)

• Non static methods must be run on an instance of a class

• FileReader fr = new FileReader("file.txt"); 
while (fr.ready()) {

the demise of the blueprint analogy

It only makes sense to ask if a file is
ready to be read if the FileReader

knows what file is being asked about
a non-static method

