
Dec 4 (book ch 4.2)

Efficiency does Matter
Part 2

FindMove Sort
return the sorted result, destroy the original

 public static int[] fbSort(int[] temp) {

 int[] result = new int[temp.length];

 for (int i = 0; i < temp.length; i++) {

 int bestloc = -1;

 for (int j = 0; j < temp.length; j++) {

 if (temp[j] >= 0) {

 if (bestloc < 0) {

 bestloc = j;

 } else {

 if (temp[bestloc] > temp[j]) {

 bestloc = j;

 }

 }

 }

 }

 result[i] = temp[bestloc];

 temp[bestloc] = -1;

 }

 return result;

 }

This implementation assumes that
numbers to be sorted are all non-

negative integers. It also assumes
sorting in descending order

Sorting

• in fbSort you destroy the original

• so if you care about the original you
need to start by making a copy

• Need a reliable way to destroy items, or
set so that same code can be used to sort
in either direction

• Objects

• set to null

• int

• ???

• kind of slow

Ideally do it faster

Do the sorting "in place"

Would be better to not destroy at all

Bubble Sort
• idea, go across array

• compare neighbors.

• if neighbor is worse (better), SWAP

• After doing this once, what does the array look like

• So as with find, print, delete, need to repeat

• faster than find, delete, print???

• Importantly .. NO delete

BubbleSort

• How many swaps?

• Worst case?

• Can we improve??

 public static void bubbleSort(int[] arr) {

 for (int i = 0; i < arr.length; i++) {

 for (int j = 1; j < (arr.length); j++) {

 if (arr[j-1] < arr[j]) {

 int temp = arr[j-1];

 arr[j-1] = arr[j];

 arr[j] = temp;

 }

 }

 }

 }

Activity
Count operations for BubbleSort

1. Comparisons 2. Additions 3. Swaps

List 1

0 10

1 22

2 54

3 86

4 56

5 15

6 55

7 7

List 3

0 10

1 12

2 14

3 16

4 26

5 35

6 45

7 47

List 2

0 90

1 82

2 74

3 66

4 56

5 55

6 45

7 37

 public static void bubbleSort(int[] arr) {

 for (int i = 0; i < arr.length; i++) {

 for (int j = 1; j < (arr.length); j++) {

 if (arr[j-1] < arr[j]) {

 int temp = arr[j-1];

 arr[j-1] = arr[j];

 arr[j] = temp;

 }

 }

 }

 }

Improving Bubble

• Observation, at end of each inner loop, one additional item in place

• Moved a lot of stuff moves, but last item is done

• So, can we only move the last item?

• Looks a lot like find, print, delete, repeat

• BUT, we will do this "in place"

• Algorithm: find, swap, repeat

Selection Sort
find, swap, repeat

 public static void selectionSort(int[] arr) {

 for (int i = 0; i < arr.length; i++) {

 int best = 0;

 for (int j = 1; j < (arr.length - i); j++) {

 if (arr[best] < arr[j]) {

 best = j;

 }

 }

 int temp = arr[best];

 arr[best] = arr[arr.length - i - 1];

 arr[arr.length - i - 1] = temp;

 }

 }

Activity
Count operations for SelectionSort

1. Comparisons 2. Additions 3. Swaps

List 1

0 10

1 22

2 54

3 86

4 56

5 15

6 55

7 7

List 3

0 10

1 12

2 14

3 16

4 26

5 35

6 45

7 47

List 2

0 90

1 82

2 74

3 66

4 56

5 55

6 45

7 37

 public static void selectionSort(int[] arr) {

 for (int i = 0; i < arr.length; i++) {

 int best = 0;

 for (int j = 1; j < (arr.length - i); j++) {

 if (arr[best] < arr[j]) {

 best = j;

 }

 }

 int temp = arr[best];

 arr[best] = arr[arr.length - i - 1];

 arr[arr.length - i - 1] = temp;

 }

 }

Bubble vs Selection vs Find/Delete
selection is much faster

Log/Linear
Log/Log

Linear/Linear

When one variable changes as
a constant power of another, a

log-log graph shows the
relationship as a straight line.

Make a Random String

• Suppose I wanted to make a string composed of random characters of some length.

• HOW???

• Start with an array of chars and pick randomly from that

• HOW?

• Start with a string and pick randomly from that

• HOW?

• Use ASCII!

• HOW?

just because

Writing Comments

• Code should be commented in 3 ways

• Every file/class should have a top level comment explaining what it does and why it exists

• Every instance variable should have a comment about what it does

• maybe just one line with //

• Every method should have a comment with:

• summary description of what it does

• description of each param

• description of return value

• very simple function may not need this

• Javadoc style

Finding things

• Have looked for stuff a LOT, usually the max

• Slightly different problem

• determine if an object with a value is in a list

• Basic Algorithm 
let arr = array of integers 
let target = an integer (the thing to find) 
for ii in 0..arr.length 
 if arr[i]==target 
 return TRUE 
return FALSE 

can we do this efficiently?

Finding Things

• Need to go though whole list

• If item is in list, then on average will
search 1/2 list every time

• How can I do better!!!

• Can I re-order the list and improve?

Basic Algorithm

let arr = array of integers 
let target = an integer 
for ii in 0..arr.length 
 if arr[i]==target 
 return TRUE 
return FALSE 

Binary Search

• let arr = array of integers 
let target = an integer 
let lo = 0 
let hi = arr.length-1 
While (lo < hi)  
 let mid = (lo+hi) / 2 
 if arr[mid]==target 
 return TRUE 
 if arr[i] < target  
 lo = mid + 1 
 else 
 hi = mid - 1 
// end while 
return FALSE

On a sorted list

