
1

CMSC113 – COMPUTER SCIENCE 1
Assignment#5 – Due on Wednesday, April 16, 2025.

In this assignment, you will write a Java program to generate a memorizable, yet secure
password. Such passwords are passphrases made up of several words from a common
dictionary randomly strung together. Look at the file:

~dkumar/CMSC113/Assignments/Assignment5/eff_wordlist.txt

It contains a curated list of words for use in passphrases (from the Electronic Frontier
Foundation - eff.org). Here are the first 5 lines from this file:

7776
11111 abacus
11112 abdomen
11113 abdominal
11114 abide
...

In the file there are 7776 such words (first line of file indicates this). Each word also has a 5-digit
code next to it. To create a passphrase, first you decide how many words it is going to be. Let us
say, we will create a two-word passphrase. Then, you will take five 6-sided dice and roll them.
When you juxtapose all the five rolls together, you get a code. For example, if you rolled, 4, 6, 5,
1, 6 to get the code: 46516. Next, you look up the passphrase words list to locate the word with
the code 46516. It is rebel. That becomes your first word in the passphrase. Repeat the
process for the second word. Say you rolled, 6, 6, 6, 6, 1 (code: 66661) to get the word zone.
Then your passphrase is rebel zone.

See, it is easily remembered. But how safe is this passphrase?

If you pick a passphrase of length 1 out of the list, any hacker can crack your password by trying
out all 7776 words. That would be very easy. For passphrases of two words, the hacker would
need to try 7776*7776=60,466,176 different passphrases to crack your password. We may be
getting somewhere! 60 million tries is a small number for any computer hacker to try, so you
would typically need to have a passphrase that is 5 or more words long. For a five-word
passphrase it would require 15,000,000,000,000,000,000 (or 15 quintillion) tries! We'll be well
protected.

In this exercise you will write a Java program that uses the list of words provided in the file
eff_wordlist.txt to generate a passphrase of a given length. For example,

$ java-introcs PassPhrase 4 <
~dkumar/CMSC113/Assignments/Assignment5/eff_wordlist.txt
Your passphrase is: enviable swirl aqua onion

https://www.eff.org/

2

Here are some other example passphrases:

marathon strut angles spoils
oval strained vanity rug
stunning prize myth strut
refund trouble impromptu rebirth

If you can get a set of five dice (or just one will do, use it five times), try to generate some
passphrases of your own by rolling the dice, creating a 5-digit code, and then looking up the
word. One quick way to find the word in Linux is to use the command grep:

$ grep 66661 ~dkumar/CMSC113/Assignments/Assignment5/eff_wordlist.txt
66661 zone
$ grep 56622 ~dkumar/CMSC113/Assignments/Assignment5/eff_wordlist.txt
56622 stuck

So, the two-word pass phrase is: zone stuck

Design your program in steps with the following requirements:

• You will read and store the codes and words in two arrays: an integer array, codes[]
and a parallel string array words[].

• Write the function: readData(codes, words) to read and store the entire contents
of the file eff_wordlist.txt (from standard input).

• Write the function: getWord(codes, words) to return a random word chosen by
rolling five dice to produce a code.

• The function getWord() should use the function: randInt(a, b) which returns a
random number in the range [a, b].

• The function getPhrase(n, codes, words) to return a passphrase string
containing n randomly chosen words (using getWord()).

While trying to generate the passphrases by hand (as described above), think about the overall
flow of the program considering the functions described above. Work incrementally to
implement the program in steps: first read the data, then write code to get a random word, and
then write code to generate the n-word passphrase. Test at each step! Several times.

And, start early!

What to hand in:

• A printout of the program file.
• Attach five sample outputs from your program with n=4 in English. Also see the files

wordlist_fi.txt (Finnish), wordlist_it.txt (Italian), and wordlist_se.txt (Swedish). Use your
program to generate 1 4-word passphrase from each language (Finnish, Italian, and
Swedish).

• Write and print out a short 1/2-paragraph reflection on your thoughts on this lab (how
this assignment went for you, what went wrong, well, etc.).

