
1

CMSC 113 – COMPUTER SCIENCE 1 (Prof. Kumar)
Lab#8-Function Libraries

In this lab you will build a small library of useful statistics functions for analyzing numerical data stored
in an array. This library is similar in functionality to the StdStats library defined in your text.

Task#1: Study the functions in the StdStats library below (we have deleted the plotting functions).
Carefully note the signatures of each function (name, return value, and parameters), and think about
how each function will be defined. We will provide some details below.

Task#2: To begin, we will first create a program that reads in some data in an array. The data will be
input from standard input (i.e., keyboard or by I/O redirection). The following program reads in some
data, of type double, in an array and then prints it out:

public class Stats {
 public static void main(String[] args) {
 double[] data; // The data array

 // Read the data array
 int n = StdIn.readInt(); // Read the size of the data, n
 data = new double[n]; // Create the data array of size, n
 readData(data);

 // output the data array
 printData(data);

 } // main()

 public static void readData(double[] a) {
 for (int i = 0; i < a.length; i++)
 a[i] = StdIn.readDouble();
 } // readData()
} // Stats

Study the program above carefully and answer the questions below:

1. What is the size of the data[] array? ____________________

2. How does readData() know how many items to read? ____________________

2

Notice that, in the program above, the definition of printData() function is missing. Write the
definition of the function printData() below:

Next, in a file Stats.java enter the complete program. Compile and run it. You can use the following
data as input:

5
3.0
1.0
4.0
5.0
2.0

Ensure that the program can read and print the data correctly before proceeding.

Next, create a data file containing the same data as above (call it, data.txt). Run your program using
the command (using I/O redirection):

$ java-introcs Stats < data.txt

You should again obtain the same output.

Task#3: Next, let us start to write the basic statistics function defined above. One at a time, define the
functions min(), max() and mean(). Then, modify the main() function to use these functions:

public static void main(String[] args) {
 double[] data; // The data array

 // Read the data array
 int n = StdIn.readInt(); // Read the size of the data, n
 data = new double[n]; // Create the data array of size, n
 readData(data);

 // output the data array
 // printData(data);

 // Do some stats on the data
 System.out.printf(“ min %7.3f\n”, min(data));
 System.out.printf(“ mean %7.3f\n”, mean(data));
 System.out.printf(“ max %7.3f\n”, max(data));

 } // main()

Before proceeding, ensure that the program is producing correct results. Show your output to your
instructor.

3

Task#4: Let us test your program on some real data. Take a look at the TSLA2025.txt file in
~dkumar/CMSC113/LabPrograms/Lab8/ directory. It contains 65 data items (as indicated in the first
line). These are the closing stock prices for Tesla Inc. for each trading day from January 1, 2025 to April
4. 2025.

Run your program on this data:

$ java-introcs Stats < ~dkumar/CMSC113/LabPrograms/Lab8/TSLA2025.txt

The output should be as shown below:

 max = 428.22
 min = 222.15
 mean = 327.42

That is, since January 1, 2025, Tesla Inc.’s stock traded as low as $222.15 and as high as $428.22 with an
average price of $327.42. You can also confirm these results by running the book’s StdStats program
on this data:

$ java-introcs StdStats < ~dkumar/CMSC113/LabPrograms/Lab8/TSLA2025.txt

It will print out other statistics that we have not yet implemented. Let us do that next.

Task#5: Implement the function var() to compute the sample variance of the dataset. Sample variance
is computed using the formula:

𝜎𝜎2 = ((𝑎𝑎0 − 𝜇𝜇)2 + (𝑎𝑎1 − 𝜇𝜇)2 + ⋯+ (𝑎𝑎𝑛𝑛−1 − 𝜇𝜇)2)/(𝑛𝑛 − 1)

Where 𝜇𝜇 is the mean. Write the function var() below and before proceeding, show it to your
instructor. Then implement and test it. Confirm your results with those from StdStats.

Task#5: Implement the stddev() (sample standard deviation) function. The sample standard deviation
is defined as follows:

𝜎𝜎 = �((𝑎𝑎0 − 𝜇𝜇)2 + (𝑎𝑎1 − 𝜇𝜇)2 + ⋯+ (𝑎𝑎𝑛𝑛−1 − 𝜇𝜇)2)/(𝑛𝑛 − 1)

Once done, test both functions and compare the results with those from StdStats to ensure their
correctness.

StdStats gives you all this functionality. But now you also know how it was defined, and in future you
can design your own useful libraries similarly.

4

Task#6: Finally, the three functions defined in StdStats that we did not implement are used for
plotting data:

Modify your main() function as shown below to plot the daily stock prices of Tesla Inc. as a bar graph:

public static void main(String[] args) {
 double[] data; // The data array

 // Read the data array
 int n = StdIn.readInt(); // Read the size of the data, n
 data = new double[n]; // Create the data array of size, n
 readData(data);

 // output the data array
 // printData(data);

 // Do some stats on the data
 StdOut.printf(“ min %7.3f\n”, min(data));
 StdOut.printf(“ mean %7.3f\n”, mean(data));
 StdOut.printf(“ max %7.3f\n”, max(data));
 StdOut.printf(“ var %7.3f\n”, var(data));
 StdOut.printf(“ stddev %7.3f\n”, stddev(data));

 // Plot the data
 StdDraw.setYscale(0, max(data)+50); // Sets the canvas
 StdStats.plotBars(data);

 } // main()

Change the plot command to try StdStats.plotLines() as well as StdStats.plotPoints().

We hope you enjoyed today’s lab!

