
1

 CMSC 113 – COMPUTER SCIENCE 1 (Prof. Kumar)
Lab#9-Using Data Types/Objects & APIs

In this lab you will practice using Data Types and their APIs.

Task#1: The Color and Picture data type and APIs

We have seen the Java Color data type in earlier examples. Here is a more detailed description:

Java's Color data type represents color values using the RGB color model where a color is defined by
three integers (each between 0 and 255) that represent the intensity of the red, green, and blue
components of the color. Other color values are obtained by mixing the red, blue, and green
components. For example, here are some colors and their RGB values:

The Color data type has a constructor that takes three integer arguments. For example, you can write

Color red = new Color(255, 0, 0);
Color magenta = new Color(255, 0, 255);

to create objects whose values represent pure red and magenta (see table above). The following table
summarizes the methods in the Color API that we use in your book:

The Picture class is provided, just like the StdOut/StdIn APIs, by your text’s authors and allows you
to load, display, and process images. Here is its API:

2

First, let us use the Picture class to see how an image is loaded and displayed:

public class Pics {
 public static void main(String[] args) {
 // Get the image file name
 String imageFile = args[0];

 // Load the image
 Picture pic = new Picture(imageFile);

 // Display it
 pic.show();

 // Show data about the image in pic
 StdOut.printf("Image file: %s\n", imageFile);
 StdOut.printf("Width = %d, Height = %d\n", pic.width(), pic.height());

 } // main()
} // Pics

Task#2: Enter, compile, and run the program above.
You will need an image file. Some are provided in the directory ~dkumar/CMSC113/LabPrograms/Lab9.
For example, you can run the program as shown below:

$ java-introcs Pics ~dkumar/CMSC113/LabPrograms/Lab9/LotusTemple.jpg

You will see an image of the Lotus Temple in a window. This is a special, picture window, not the same
as the one where you draw your graphics using StdDraw. Notice how the instance methods width(),
height(), and show() are being used above.

Task#3: Learning about luminance and grayscale of color.
The quality of the images on modern displays such as LCD monitors, plasma TVs, and cell-phone screens
depends on an understanding of a color property known as monochrome luminance, or effective
brightness. It is a linear combination of the three intensities: if a color's red, green, and blue values are r,
g, and b, respectively then its luminance is defined by the equation

𝑌𝑌 = 0.299𝑟𝑟 + 0.587𝑔𝑔 + 0.114𝑏𝑏

Grayscale. The RGB color model has the property that when all three color intensities are the same, the
resulting color is on a grayscale that ranges from black (all 0s) to white (all 255s). A simple way to
convert a color to grayscale is to replace the color with a new one whose red, green, and blue values
equal its luminance. See example below:

3

Next, using the get() and set() instance methods of Picture object change all pixels in an image to
grayscale. You can use the following function:

public static void grayScale(Picture p) {
 // Convert color image p to gray scale image

 int w = p.width();
 int h = p.height();
 for (int col = 0; col < w; col++) {
 for (int row = 0; row < h; row++) {
 Color color = p.get(col, row);
 Color gray = toGray(color);
 p.set(col, row, gray);
 }
 }
 } // grayScale()

Given a Picture object p, the grayscale() function converts all pixels of p into corresponding
grayscale values. You will need to write your own function toGray() to convert a given color to
grayscale using luminance, as described above (you will need to use the Color data type). Be sure to
have the command:

import java.awt.Color;

At the very top of your program, outside the class definition. This is how you access Java’s pre-defined
APIs.

Do this: Write a complete program that loads a specified image (as in Task#1), converts it into a gray
scale image, and displays it.

4

Task#4: More image processing fun!
Time permitting, we will do some more in class next week. If you have time, try the program below on
the images in the Week12 directory.

import java.awt.Color;

public class Obamicon {
 public static void main(String[] args) {
 Color darkBlue = new Color(0, 51, 76);
 Color red = new Color(217, 26, 33);
 Color lightBlue = new Color(112, 150, 158);
 Color yellow = new Color(252, 227, 166);

 String imageFile = args[0];
 Picture pic = new Picture(imageFile);

pic.show();

 StdOut.printf("Press ENTER");
 char c = StdIn.readChar();

 for (int col = 0; col < pic.width(); col++) {
 for (int row = 0; row < pic.height(); row++) {
 Color color = pic.get(col, row);
 int r = color.getRed();
 int g = color.getGreen();
 int b = color.getBlue();
 int total = r + g + b;
 if (total < 182)
 pic.set(col, row, darkBlue);
 else if (total < 364)
 pic.set(col, row, red);
 else if (total < 546)
 pic.set(col, row, lightBlue);
 else
 pic.set(col, row, yellow);
 }
 }
 pic.show();
 } // main()
} // Obamicon

Note: If you have completed all tasks you are done with the lab. Please, continue with the remainder of
this lab at your own pace outside the lab.

5

Task#5: Strings in Java
Recall that the behavior of a data type in an application programming interface (API). The String data
type in Java has an API that contains the following (this is a partial list):

The first entry, with the same name as the class and no return type, defines a special method known as
a constructor. The other entries define instance methods that can take arguments and return values.

To use a data type like String that is defined as an object type, you must learn how to declare
variables, create objects, and then invoke instance methods. Study carefully the example shown below
and read the descriptions that follow.

• Declaring variables. You declare variables of a reference type in precisely the same way that
you declare variables of a primitive type. A declaration statement does not create anything; it
just says that we will use the variable name s to refer to a String object.

6

• Creating objects. Each data-type value is stored in an object. When a client invokes a
constructor, the Java system creates (or instantiates) an individual object (or instance). To
invoke a constructor, use the keyword new; followed by the class name; followed by the
constructor’s arguments, enclosed in parentheses, and separated by commas.

• Invoking instance methods. The most important difference between a variable of a reference
type and a variable of a primitive type is that you can use reference-type variables to invoke the
instance methods that implement data-type operations (in contrast to the built-in syntax
involving operators such as +* that we used with primitive types).

Based on the API on Page 1, here are some other string-processing examples.

• Data-type operations. The following examples illustrate various operations for the String data
type.

Before proceeding to Task#2, please closely review the material above, including the list of String
methods in the API.

Task#6: Verifying Safe Passwords
In order for passwords to be safe, various services follow safe password practices. As you know from
your Assignment#5 pass phrases are considered the safest memorizable passwords. In addition to pass
phrases, services also have requirements for what qualifies as a safe password. For example, here is a
description of safe passwords from an organization:

Your password must be at least 10 characters long and must contain uppercase letters, lowercase letters,
and numbers and/or symbols.

Write a complete Java program that inputs a user password from the command line, verifies it using the
rules above, and declares if the password is valid or not. For example,

$ java-introcs VerifyPassword “ClaptonIsGod”
<ClaptonIsGod> is not a valid password.

$ java-introcs VerifyPassword “Clapton Is God”
<Clapton Is God> is a valid password.

Your program (VerifyPassword.java) should contain the following function:

public static boolean verify(String p) {…}

7

that, given a password string p, verifies and returns true/false as the case may be. You will use the
rules specified above and make use of the String API to confirm the validity of the password. Write
your program in steps, enforcing one rule at a time, and then testing it:

// Must contain at least 10 characters
if (p.length() < 10)
 return false;
// Must contains uppercase letters
if …etc.

Think carefully about each test and what String methods might be used. Here are some hints:

• To test if the string contains uppercase letters, you can simply convert the password to all
lowercase letters and then compare to see if the resulting string is equal to the original string.
Similarly, for checking lowercase letters.

• To test for numbers and symbols, define a new string that contains all the numbers and
symbols. Then for each character in the password, if that character is contained in the string of
numbers and symbols, the password is valid (only one such character is required by the rules).

