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Priority Queues 

n  Priority: some property of an object that allows it to be 
prioritized with respect to other objects of the same type 

n  Min Priority Queue: homogeneous collection of Comparables 
with the following operations (duplicates are allowed). Smaller 
value means higher priority. 
q  void insert (Comparable x) 
q  void deleteMin( ) 
q  Comparable findMin( )  
q  Construct from a set of initial values 
q  boolean isEmpty( ) 
q  boolean isFull( )  
q  void makeEmpty( ) 



Priority Queue Applications 
n  Printer management:  

q  The shorter document on the printer queue, the 
higher its priority. 

n  Jobs queue within an operating system: 
q  Users’ tasks are given priorities. System has high 

priority. 
n  Simulations 

q  The time an event “happens” is its priority. 
n  Sorting (heap sort) 

q  An elements “value” is its priority. 



Possible Implementations 
n  Use a sorted list. Sorted by priority upon 

insertion. 
q  findMin( )  --> list.front( ) 
q  insert( )  --> list.insert( )    
q  deleteMin( )  --> list.erase( list.begin( ) )   

n  Use ordinary BST 
q  findMin( )  --> tree.findMin( )    
q  insert( )  --> tree.insert( )    
q  deleteMin( )  --> tree.delete( tree.findMin( ) )  

n  Use balanced BST 
q  guaranteed O(lg n) for Red-Black 



Min Binary Heap 
n  A min binary heap is a complete binary tree with 

the further property that at every node neither 
child is smaller than the value in that node (or 
equivalently, both children are at least as large 
as that node). 

n   This property is called a partial ordering. 
n  As a result of this partial ordering, every path 

from the root to a leaf visits nodes in a non-
decreasing order. 

n  What other properties of the Min Binary Heap 
result from this property? 



Min Binary Heap Performance 
n  Performance (n is the number of elements in 

the heap) 
q  construction  O( n ) 
q  findMin   O( 1 ) 
q  insert   O( lg n ) 
q  deleteMin  O( lg n ) 

n  Heap efficiency results, in part, from the 
implementation 
q  Conceptually a complete binary tree 
q  Implementation  in an array/vector (in level order) 

with the root at index 1 



Min Binary Heap Properties 

n  For a node at index i 
q  its left child is at index 2i 
q  its right child is at index 2i+1 
q  its parent is at index ⎣i/2⎦ 

n  No pointer storage 
n  Fast computation of 2i and ⎣i/2⎦ by bit shifting 

i << 1 = 2i 
i >> 1 = ⎣i/2⎦ 
 



Heap is a Complete Binary Tree 



Which satisfies the properties of a Heap? 



Min BinaryHeap Definition  
public class  
BinaryHeap<AnyType extends Comparable<? super AnyType>> 
{ 
    public BinaryHeap( )  { /* See online code */ } 
    public BinaryHeap( int capacity ){ /* See online code */ } 
    public BinaryHeap( AnyType [ ] items ){/* Figure 6.14 */ } 
    public void insert( AnyType x ) { /* Figure 6.8 */ } 
    public AnyType findMin( )      { /* TBD */ } 
    public AnyType deleteMin( ) { /* Figure 6.12 */ } 
    public boolean isEmpty( ) { /* See online code */ } 
    public void makeEmpty( ) { /* See online code */ } 
 
    private static final int DEFAULT_CAPACITY = 10; 
    private int currentSize;     // Number of elements in heap 
    private AnyType [ ] array;   // The heap array 
 
    private void percolateDown( int hole ){/* Figure 6.12 */ } 
    private void buildHeap( ) { /* Figure 6.14 */ } 
    private void enlargeArray(int newSize){/* code online */} 
} 



Min BinaryHeap Implementation 

public AnyType findMin( ) 

{ 
 if ( isEmpty( ) ) throw Underflow( ); 

     return array[1]; 
} 



Insert Operation 
n  Must maintain 

q  CBT property (heap shape):  
n  Easy, just insert new element at “the end” of the array 

q  Min heap order 
n  Could be wrong after insertion if new element is smaller 

than its ancestors 
n  Continuously swap the new element with its parent until 

parent is not greater than it 
q  Called sift up or percolate up 

n  Performance of insert is O( lg n ) in the worst 
case because the height of a CBT is O( lg n ) 



Min BinaryHeap Insert (cont.) 
/** 
     * Insert into the priority queue, maintaining heap order. 

     * Duplicates are allowed. 

     * @param x the item to insert. 

     */  

public void insert( AnyType x ) 
{ 

   // resize array if needed 

 

   // place x into the complete binary tree 

 

 // restore the heap order by percolating up 

} 



Insert 14 



Deletion Operation 
n  Steps 

q  Remove min element (the root) 
q  Maintain heap shape 
q  Maintain min heap order 

n  To maintain heap shape, actual node 
removed is “last one” in the array 
q  Replace root value with value from last node and 

delete last node 
q  Sift-down the new root value  

n  Continually exchange value with the smaller child until 
no child is smaller. 



Min BinaryHeap Deletion(cont.) 
/** 
  * Remove the smallest item from the priority queue. 
  * @return the smallest item, or throw   
                    UnderflowException, if empty. 
  */ 
    public AnyType deleteMin( ) 
    { 
        if( isEmpty( ) ) 
            throw new UnderflowException( ); 
 
        AnyType minItem = findMin( ); 
        array[ 1 ] = array[ currentSize-- ]; 
        percolateDown( 1 ); 
 
        return minItem; 
    } 



MinBinaryHeap percolateDown(cont.) 
 /** 
     * Internal method to percolate down in the heap. 
     * @param hole the index at which the percolate begins. 
     */ 
private void percolateDown( int hole ) 
{ 
    int child; 
    AnyType tmp = array[ hole ]; 
    for( ; hole * 2 <= currentSize; hole = child ){ 
       child = hole * 2; 
       if( child != currentSize && 
            array[ child + 1 ].compareTo( array[ child ] ) < 0 ) 
                child++; 
      if( array[ child ].compareTo( tmp ) < 0 ) 
            array[ hole ] = array[ child ]; 
      else 
            break; 
    } 
        array[ hole ] = tmp; 
} 



deleteMin  



deleteMin (cont.) 



Constructing a Min BinaryHeap 
n  A BH can be constructed in O(n) time. 
n  Suppose we are given an array of objects in 

an arbitrary order. Since it’s an array with no 
holes, it’s already a CBT. It can be put into 
heap order in O(n) time. 
q  Create the array and store n elements in it in 

arbitrary order. O(n) to copy all the objects. 
q  Heapify the array starting in the “middle” and 

working your way up towards the root 
for (int index = ⎣n/2⎦ ; index > 0; index--) 

percolateDown( index ); 



Constructing a Min BinaryHeap(cont.) 
 //Construct the binary heap given an array of items. 
 public BinaryHeap( AnyType [ ] items ){ 
     currentSize = items.length; 

     array = (AnyType[]) new Comparable[ (currentSize + 2)*11/10 ];    

     int i = 1; 

     for( AnyType item : items ) 

         array[ i++ ] = item; 

     buildHeap( ); 
 } 

 

 // Establish heap order property from an arbitrary 

 // arrangement of items. Runs in linear time. 

 private void buildHeap( ){ 
     for( int i = currentSize / 2; i > 0; i-- ) 

        percolateDown( i ); 

 } 



Performance of Construction 

n  A CBT has 2h-1 nodes on level h-1. 
n  On level h-l, at most 1 swap is needed per node. 
n  On level h-2, at most 2 swaps are needed. 
n  … 
n  On level 0, at most h swaps are needed. 
n  Number of swaps = S 

  = 2h*0 + 2h-1*1 + 2h-2*2 + … + 20*h 
  =   
 
  = h(2h+1-1) - ((h-1)2h+1+2) 
  = 2h+1(h-(h-1))-h-2 
  = 2h+1-h-2   
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Performance of Construction (cont.) 

n  But 2h+1-h-2  = O(2h) 
n  But n = 1 + 2 + 4 + … + 2h = 
n  Therefore, n = O(2h) 
n  So S = O(n) 

n  A heap of n nodes can be built in O(n) time.   
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Heap Sort 
n  Given n values we can sort them in place in O(n log n) time 

q  Insert values into array  -- O(n) 
q  heapify -- O(n) 
q  repeatedly delete min -- O(lg n), n times 

n  Using a min heap, this code sorts in reverse (high down to 
low) order. 

n  With a max heap, it sorts in normal (low up to high) order. 
n  Given an unsorted array A[ ] of size n 
  for (i = n-1; i >= 1; i--) 
  { 
   x = findMin( ); 

   deleteMin( ); 
   A[i+1] = x; 

  } 



Limitations 

n  MinBinary heaps support insert, findMin, 
deleteMin, and construct efficiently. 

n  They do not efficiently support the meld or 
merge operation in which 2 BHs are merged 
into one. If H1 and H2 are of size n1 and n2, 
then the merge is in O(n1 + n2) . 



Leftist Min Heap 

n  Supports 
q  findMin  -- O( 1 ) 
q  deleteMin  -- O( lg n ) 
q  insert   -- O( lg n ) 
q  construct  -- O( n ) 
q  merge   -- O( lg n ) 



Leftist Tree 
n  The null path length, npl(X), of a node, X,  is defined as the length of 

the shortest path from X to a node without two children (a non-full 
node). 

n  Note that npl(NULL) = -1. 

n  A Leftist Tree is a binary tree in which at each node X, the null path 
length of X’s right child is not larger than the null path length of the X’s 
left child . 
I.E. the length of the path from X’s right child to its nearest non-full 
node is not larger than the length of the path from X’s left child to its 
nearest non-full node. 

n  An important property of leftist trees:  
q  At every node, the shortest path to a non-full node is along the 

rightmost path. 
 “Proof”: Suppose this was not true. Then, at some node the path on 
the left would be shorter than the path on the right, violating the leftist 
tree definition. 



Leftist Min Heap 
n  A leftist min heap is a leftist tree in which 

the values in the nodes obey heap order (the 
tree is partially ordered). 

n  Since a LMH is not necessarily a CBT we do 
not implement it in an array. An explicit tree 
implementation is used. 

n  Operations 
q  findMin   -- return root value, same as MBH 
q  deleteMin  -- implemented using meld operation 
q  insert   -- implemented using meld operation 
q  construct   -- implemented using meld operation 



Merge 
// Merge rhs into the priority queue. 
// rhs becomes empty. rhs must be different from this. 
// @param rhs the other leftist heap. 
public void merge( LeftistHeap<AnyType> rhs ){ 
        if( this == rhs ) return; // Avoid aliasing problems 
        root = merge( root, rhs.root ); 
        rhs.root = null; 
} 
// Internal method to merge two roots. 
// Deals with deviant cases and calls recursive merge1. 
private Node<AnyType> merge(Node<AnyType> h1, Node<AnyType> h2 ){ 
        if( h1 == null ) return h2; 
        if( h2 == null ) return h1; 
        if( h1.element.compareTo( h2.element ) < 0 ) 
            return merge1( h1, h2 ); 
        else 
            return merge1( h2, h1 ); 
} 



Merge (cont.) 

 /** 
 * Internal method to merge two roots. 
 * Assumes trees are not empty, and h1's root contains smallest item. 
 */ 
 private Node<AnyType> merge1( Node<AnyType> h1, Node<AnyType> h2 ) 
 { 
        if( h1.left == null )   // Single node 
            h1.left = h2;       // Other fields in h1 already accurate 
        else 
        { 
            h1.right = merge( h1.right, h2 ); 
            if( h1.left.npl < h1.right.npl ) 
                swapChildren( h1 ); 
            h1.npl = h1.right.npl + 1; 
        } 
        return h1; 
 } 



Merge (cont.) 

n  Performance: O( lg n ) 
q  The rightmost path of each tree has at most ⎣lg(n

+1)⎦ nodes. So O( lg n ) nodes will be involved. 









Student Exercise 

n  Show the steps needed to merge the Leftist 
Heaps below. The final result is shown on the 
next slide. 
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19 20 

8 

15 10 

30 25 



Student Exercise Final Result 

6 

17 8 

12 19 10 

20 15 

25 

30 



Min Leftist Heap Operations 

n  Other operations implemented using Merge( ) 
q  insert (item) 

n  Make item into a 1-node LH, X 
n  Merge(this, X) 

q  deleteMin 
n  Merge(left subtree, right subtree) 

q  construct from N items 
n  Make N LHs from the N values, one element in each 
n  Merge each in 

q  one at a time (simple, but slow) 
q  use queue and build pairwise (complex but faster) 



LH Construct 

n  Algorithm: 
Make n leftist heaps, H1….Hn each with one data 

value 
Instantiate Queue<LeftistHeap> q; 
for (i = 1; i <= n; i++)  

 q.enqueue(Hi); 

Leftist Heap h = q.dequeue( ); 
while ( !q.isEmpty( ) ) 

 q.enqueue( merge( h, q.dequeue( ) ) ); 
 h = q.dequeue( ); 


