
1	
  

Linked Lists 
 

Based on the notes from David Fernandez-Baca and Steve Kautz 

Bryn Mawr College 
CS206 Intro to Data Structures 

Practice 2: Implementing  

Singly-Linked Lists Collection 

Goal: To implement Collection using null-terminated, 
singly-linked lists without dummy nodes.  

public class SinglyLinkedCollection<E> extends AbstractCollection<E>{ 
    private Node head; 
    private int size; 
    private class Node{ 
        public E data; 
        public Node next; 
        public Node(E pData, Node pNext){ 
            data = pData; 
            next = pNext; 
        } 
    } 
    public int size() { return size; }  



2	
  

add() 
    public boolean add(E item) { 
        //add an item at the end  
        Node temp = new Node(item, null);  
        if  (head == null) {  
            // add to empty list  
            head = temp;  
        } else {  
            // add after tail  
            Node current = head;  
            while (current.next != null) { current = current.next; }    
            current.next = temp;  
        }  
        ++size;  
        return true;  
   }  

First attempt: remove() 
    public boolean remove(Object obj) {  
        Node current = head;  
        Node previous = null;  
        while (current != null) {  
            // TODO: if  current.data matches obj,  
            // unlink current and return true  
            // (don’t forget special case for head)  
            previous = current;  
            current = current.next;  
        }  
        return false;  
    }  

To remove an element in a singly linked list, we need a reference 
to the predecessor of  the node to be removed. More later… 



3	
  

Iterators 
The state of  an iterator is represented by three variables:  
•  cursor: Points to the predecessor of  the next element. 

The value of  cursor is null if  the next element is head, or 
if  the list is empty.  

•  canRemove: A Boolean variable that indicates whether it 
is legal to invoke remove().  

•  previous: Points to the predecessor of  the node to be 
removed. More precisely:  
o  If  canRemove is true and cursor != head, then previous 

points to the predecessor of  cursor.  
o  If  cursor == head, then previous == null.  
o  If  canRemove is false, then previous == null.  

 

Iterators (cont.) 
    public Iterator<E> iterator() { return new LinkedIterator(); }  
    private class LinkedIterator implements Iterator<E> {  
        private Node cursor = null;  
        private Node previous = null;  
        private boolean canRemove = false;  
        public boolean hasNext() {  
            return size > 0 && (cursor == null || cursor.next != null);  
        }  
        public E next() {  
            if  (!hasNext()) throw new NoSuchElementException();  
            // we know size > 0 and either cursor is null  
            //or cursor.next is non-null  
            if  (cursor == null) { // next element to return is head  
                previous = null; cursor = head;  
            } else { previous = cursor; cursor = cursor.next; }  

      canRemove = true;  
            return cursor.data;  
       }  



4	
  

Iterators (cont.) 
    public void remove() {  
        if  (!canRemove) throw new IllegalStateException();  
        if  (previous == null) {  
            // removing first element  
            head = head.next;  
            cursor = null;  
        } else { // removing element at cursor  
            previous.next = cursor.next;  
            cursor = previous;  
        }  
        --size;  
        canRemove = false;  
        previous = null;  
    }  

      }  
}  

Time Complexity 
•  Getting an element at a given index  

o  Linked list:O(n) 
- Reason: We have to traverse the list to find the position 

o Array list:O(1)  

•  Checking contains(object)  
o  Linked list:O(n) 
o Array list:O(n)  

•  Checking size()  
o  Linked list:O(1)  
o Array list:O(1)  



5	
  

Time Complexity (cont.) 
•  Adding a new element at the end  

o  Linked list:O(1) 
o Array list: O(1): during a sequence of  such operations, we 

may have to resize the array several times. In practice we 
donʼt worry about this, because we can claim that adding n 
elements to an array list requires time O(n). That is, the 
amortized cost per add is O(1).  

Explanation (Optional): Suppose we start out at size 1 and 
that n is a multiple of  2,say n is 2p. Each time we run out of  
space, we double the capacity. Then, there are resize 
operations for sizes 1, 2, 4, 8, 16, ..., 2p-1.  
A resize operation on an array of  size k takes time O(k). So 
the total cost of  all the resize operations is  

 O(1 + 2 + 4 + ... + 2p-1) = O(2p) = O(n).  

Time Complexity (cont.) 
•  Adding or removing at a given position  

o Linked list: O(n) – we have to traverse the list to find 
the position 

o Array list: O(n) – we have to shift elements to add/
remove in the middle of  the array  

•  Removing a given element  
o Linked list: O(n) – we have to find the element 
o Array list: O(n) – we have to find the element, then 

shift elements to remove, but O(n) + O(n) = O(n)  



6	
  

Time Complexity (cont.) 
•  Adding or removing an element during iteration  

o Linked list: O(1) – Already have the node, so linking 
or unlinking is O(1)  

o Array list: O(n) – We have to shift elements to add/
remove  

•  Given a list of  length n, iterate over the list and 
perform k adds or removes at arbitrary locations:  
o Linked list: O(n) + O(k) = O(n + k) or O(max(n, k))  
o Array list: O(nk) – each of  the k operations is 

potentially O(n)  

Space Complexity 
•  Array lists potentially waste some space because of  

the empty cells. (But remember, each empty cell is 
just an object reference – it takes up 4 bytes, not the 
space of  the object itself !)  

•  For many short lists, linked lists may be more space-
efficient. On the other hand, linked lists potentially 
waste space, because each element has to be wrapped 
in its own node object.  


