CMSC206 Data Structures (Fall 2014: Deepak Kumar)
Lab#1: Java & Eclipse (An Introduction)

Objective: Today, you will get your first introduction to writing simple Java programs. Also, you will
learn how to use the Eclipse IDE to write, compile, and run Java programs. Beyond the basic “Hello
World” program, you will also learn how to do simple dialog-based interaction. Also, you will learn how
use the Java Math class and to do some simple computations.

Hello Java

The program shown below prints out a simple message in the Java Console:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!!!");
} // main()

} // class HelloWorld

The following steps are required to write, compile, and run the program:

1. Enter the code and save it in a file called, HelloWorld. java
2. Compile it using the Java compiler:

>java HelloWorld.java
This creates a file called HelloWorld.class
3. Run the program by using the Java Virtual Machine (JVM):

> java HelloWorld
Hello World

This approach requires you to have an editor (like Notepad) to create and save your program. Then,
using the command line you have to enter the command to compile and run the program. This will be
shown to you in the lab. As you can see, this can get tedious even for the shortest of programs.

Hello Eclipse!

@ The Eclipse Integrated Development Environment (IDE) enables you to edit, compile, and
?_%7 run your programs in a more organized and structured manner. In fact, Eclipse is a
powerful software development environment and may appear too daunting at the other
end of the scale at first. Fear not, we will learn gradually and ease into it. Let’s get started. Find Eclipse
on your computer and start the application. You will see a window shown below:

ﬁ& n‘JT-lt'.h—.-r el

Select a workspace

Eclipse stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session.

QUL BT 2 Users! dkumar Documents\My Courses\C5206'Programs

[] Use this as the default and do not ask again

Figure 1: Eclipse will ask you for your workspace.

When you start Eclipse, it will ask you to specify your workspace. This is the folder where you will be
saving all your Java programs. Think about a good place (for instance, | save my Java programs in a
folder called MyCourses\CS206\Programs). Yours could be on your USB drive, or a folder in your
account. Browse to your programs folder (create one if you do not have one yet), and then click the OK
button. You will see the screen shown below:

== = = —
= Java - Eclipse Fe - lﬂm
'File Edit Source Refactor Navigate Search Project Run Window Help

5 || @ Welcome 2 fay oA S

v B

'
Welcomeito the Eclipse IDE for Java Developers

®

Figure 2: The Eclipse Start Screen

The welcome screen will appear for first time users. If you mouse over the bubbles, they will reveal
various places you could go to get more information. For now, just close the folder by clicking on the X in
the Welcome tab in the top-left part of the screen (just above the Welcome to the Eclipse IDE
for Java Developers message).

The Java Perspective

Once you close the Welcome screen you will see the screen shown below. This is the Java Perspective.
Go ahead and maximize the application window. This is essentially your home base for doing all your
Java work. Let’s spend some time getting familiar with it. Then we can write and run our first program.

f = Java - Eclipse - —|u= i:h1
File Edit Mavigate Search Project Run Window Help
e | | BrO-aTNEGISE T
] - - b - | » Quick Access i=¢ |
[# Package Explorer 532 = 8 = O [E] Task List &2 = 8
_<;=={.>| - ""|%E|s|¥'
Find S| P All P Acti.
Task List
Package
Exol Editor
xplorer
(Code goes here) Bz ouine 55 < O

An outline is not available.

Outline

|21 Problems &2 T2 T =8

0 items

Description Resource Path Lecation Type

Problems

Figure 3: The Java perspective

Apart from the Menu options/icons, the application is divided into 5 major panes/sections/views (see
above):

1. Package Explorer: This will show all your project files
Editor: This is where you edit/write code
Problems: This is where problems are reported. Also notice tabs for Javadoc, Declaration,
Diagrams, etc. We will visit these later.
4. Task List: TODO tasks listed here. You can close this. We will not need this for some time.
5. Outline: This will show an outline of your code (to be used later).

For now, just focus on the Menu options, the Package Explorer, and the Editor panes. Let’s create a
project to write and run our Hello World program.

The Hello World Program

From the File Menu, select New and from the second menu that pops up, select Java Project (see

below):

= Java - Eclipse - TH ‘

Edit Mavigate Search Project Run Window

Mew Alt+Shift+N »
Open File...

Close Ctrl+W
Close All Ctrl+Shift+W

ave Ctrl+5

Save All Ctrl+Shift+5
Revert

T T

Move...
Rename... F2

Refresh F5

e

Convert Line Delimiters To 3

Print... Ctrl+P

Switch Workspace v T

Restart

Import...
Export...

C. &

Properties Alt+Enter

Exit

=]

=

T Task

Help
Java Project

Project...

Package

Class

Interface

Enum
Annotation
Source Folder
Java Working Set
Folder

File

Untitled Text File
JUnit Test Case

Example...

Other... Ctrl+N

Figure 4: Creating a new Java project.

Every Java program you write will be part of a Project.
After you select the New Project option, you will get a
pop up window (see Figure 5). This is a form to fill out
some details about the kind of project you are creating.

All you have to do here is enter the name for your
project in the Project name field. We have chosen
HelloWorld as you can see.

Click Finish to go ahead and create the project, now
named HelloWorld.

You will notice that the HelloWorld project is now listed
in the Project Explorer pane. Go ahead and click on the
little triangle to expose the contents of the project. This
is shown in Figure 6.

Essentially what Eclipse has done is created a folder
called HelloWorld in your specified workspace folder. In
it, it has placed another folder called src which is
currently empty. src is short for Source Code and this is
where the code for your program needs to go.

.
= New Java Project 5 [z

Create a Java Project -
Create a Java project in the workspace or in an external location. g

Project name: | HelloWorld

[¥] Use default location

C:\Users\dkumar\Documents\My Courses\CS206\MyWork\| | Browse...
JRE

@ Use an execution environment JRE: [JavaSE-1.7 -
*) Use a project specific JRE: jreT

*) Use default JRE (currently 'jreT’) Configure JREs..

Project layout
*) Use praject folder as root for sources and class files

@ Create separate folders for sources and class files Configure default...

Waorking sets
[Add project to working sets

Select..

@ < Back Net> || Fnish][Cancel

Figure 5: The New Java Project Form

= Java - Eclipse

File Edit Source Refactor Mavigate Search Proje

Te =
- - - v| E
[Package Explorer &3 = O
= <~}:€>| ey 7

a = HelloWorld

2 src
> B JRE System Library [JavaSE-1.7]

B = Java - Eclipse
| Edit Source Refactor MNavigate Search
New Alt=Shift+N ¥ | (2% Java Project
Open File... F% Project...
Close Ctrl+W | §¥ Package
Close All Ctrl+Shift+W | & Class
-
Save G || |DEE
Save As... (F] | B
Save Al el (g Lnctancy
5
Revert &% Source Folder
151 Java Working Set
Rioues 9 Folder
Rename.. F2 + File
et |[Refresh B | & Untitled Text File
Convert Line Delimiters To > E¥ JUnit Test Case
Print. CtrlsP | O Task
Switch Workspace » | [Bample..
et =4 Other... Ctrl+N
iy Import..]

Figure 6: Looking at the HelloWorld Project, and creating a new class.

Next, select the File Menu again, followed by
New, and this time select the Class option (see
Figure 6). Another form window will pop up as
shown in Figure 7.

Again, enter the name of the class (HelloWorld)
in the Name field of the form.

Also, make sure the little box against public
static void main(String[] args) is

checked.

You do not need to do anything else, but be
sure that your form matches with the one
shown.

Next, click Finish.

You will notice that Eclipse has created what
looks like most of our HelloWorld Java program!

] [|

Browse...

= Mew Java Class

Java Class

1%, The use of the default package is discouraged.

Source folder: HelloWorld/src

Package: (default)
[Enclosing type: Browse...
MNare: HelloWorld
Modifiers: @ public () default private protected
[7] abstract [|final static
Superclass: javalang.Object
Interfaces: Add...
Remove
Which method stubs would you like to create?
public static void main(String[] args)
["] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Cenfigure templates and default value here
D Generate comments
=
k?j [Finish] [Cancel

Figure 7: The new class form.

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!!!");

} // main()

} // class HelloWorld

[J] HelloWorld java &2

public class HellokWorld {

public static void main(5tring[] args) {
ff Auto-generated method stub

Figure 8: The HelloWorld program template.

Eclipse has created, based on the information you provided in the previous form, a template Java
program for you (see Figure 8). Now, all you have to do is delete the TODO comment stub and add the
System.out.println (..) command inthemain () method. Thisis shown below:

[J] *HelloWorld java &2

public class HellokWorld {

public static void main(String[] args) {
System.out.println("Hello World!!!™)

¥

Figure 9: Your First Java Program!

Now you are ready to run the program. But first, be sure to Save the program (from the File Menu select
the Save option). From the Run Menu, select the Run option (see Figure 10).

= Java - HelloWorld/src/HelloWorld java - Eclipse
File Edit Source Refactor MNavigate Search Projecthdow Help

09 =@ Run Ctrl+F11 OGN @ TP
%, Debug F11
[% Pa ¥ =98 [4] HelloWerld,java &2
Run History 3
4 Iz
J Run As 4 public class HelloWorld {

Run Conf tions...
un Configuratiens, public static void main(String[] args) {

Debug History » System.out.println("Hello World!!!]');

Debug As »

H

Debug Configurations...

Figure 10: Select the Run option from the File Menu

Stuff happens. Very fast! If you focus on the pane below the Editor window, a Console window is shown
with the output of your program (see Figure 11):

r

-
2 Java - HelloWorld/src/HelloWarld.java - Eclipse =NACE X
I3 ‘B R _
File Edit Source Refactor MNavigate S5earch Project Run Window Help
T & : HrO-A-NFo-Ime v iRy E T
b e S e ¥ o v| o Quick Access ﬁj’|
[# Package Explorer 53 = 8 [3] HelloWorld java &2 = 8 [E] Task List 22 = 8
- q:D' ¢ 7 ublic class HelloWorld { i a- |%_| ° | X E
4 2 HelloWorld P -
4 [src public static void main({String[] args) { - = .
4 {3 (default package) System.out.println("Hello World!!!"); Find S » All P Acti.
- [J] HelloWorld.java
> B JRE System Library [JavaSE-1.7] }
}
0= Outline 52 = 8
e EERRS e
=

4 ®, HelloWorld
of main(5tring[]) : v

» <[['
El Console 32 T2 ® 5&| IIUE' = *f-=0

<terminated> Hello

d [Java Application] C:\Program Files\Java\jre7\bin\javaw.exe (Jan 24, 2014, 4:31:15 PM)
Hello World!!!

Writable Smart Insert 5:43

Figure 11: You just ran the Hello World program!

El Console 33 T3 & S%|) .'_'.El =

<terminated> HelloWorld [Java Application] C\Program Files\Java\jred\bin'\javaw.exe (Jan 24, 2014, 4:31:15 PM)
Hello World!!!

Figure 12: The result of the Hello World program.

Make some changes to the program and run it a few more times. Also, notice the icons bar below the
Menu Bar. Many of the Menu items are available here so you can just click and go. Your instructor will
give you an overview of these during the lab session.

Congratulations, now you are a Java & Eclipse newbie!!

After completing, be sure to say YES to Item#2 on the lab report.

Dialog Based Interaction

Modify the Hello World program to look like the one shown below:

import javax.swing.JOptionPane;
public class HelloWorld {
public static void main(String[] args) {

JOptionPane.showMessageDialog(null, "Hello World!!!");

}

Your instructor will explain the details of the dialog boxes in the lab session. Run the program. This time
you will see a pop up window shown below:

[Message @1

I
\IJ Hello Worla!!

OK

Figure 13: Hello World in a pop-up window!

Next, try the code below:

import javax.swing.JOptionPane;
public class HelloWorld {
public static void main(String[] args) {

String name = JOptionPane.showInputDialog("Enter your name:");
JOptionPane.showMessageDialog(null, "Hello " + name + "!11");

}

Run it. Enter your name and Click OK.
Now we’re having fun!

After completing, be sure to say YES to Item#3 on the lab report.

The Math class

Section A.4 in the Appendix of your text describes the Java Math class. It defines a number of useful
mathematical functions. For example, you can compute the logarithm of a number, various
trigonometric functions, etc. We will next learn how to use functions from this class to do some simple
computations:

Exercise 1: Write a Java program that prints out the square roots of all the numbers between 1 and 10.
The function
double Math.sqgrt (n)

returns the square root of n. The program shown below uses it to solve the exercise:

public class Squares {
public static void main(String[] args) {
for (int i=1; 1 <= 10; i++) {
System.out.println(i + "\t" + Math.sqrt(i));

Go ahead, create a new project, enter the program shown and observe the output (shown below):

.0
.4142135623730951
.7320508075688772
.0
.23606797749979
.449489742783178
.6457513110645907
.8284271247461903
.0
.1622776601683795

OWOoONOTUVTA WNER
W WNNNNMNNRE R,

=
(W]

Notice how we used the TAB character (\ t) to align the numbers in the second column. Please write
and run the above program. After completing, be sure to say YES to Item#4 on the lab report.

Here is another exercise.

Exercise 2: Write a program to compute and print all the perfect squares between 1 and 100. A perfect
square is an integer that is a square of another integer and itself. For example, 9 is a perfect square
(3x3). As is 25 (5x5).

The program shown below is a slight variation of the one above. Study it. Then enter and run it. You may
use a new project or just modify the project from above.

public class Squares {

public static boolean perfectSquare (int n) {

// Returns true if n is a perfect square, false otherwise
int sg = (int) Math.sqgrt(n);
return (n == sqgq * sq);

}

public static void main (String[] args) {
for (int 1i=1; i <= 100; i++) {
if (perfectSquare(i)) {
System.out.println (i) ;
}

Notice that we used a function perfectSquares () to tell us if a given number is a square or not.
While this is not essential, it is good practice. It also shows you how to write static functions in your
main program. Also, notice the type casting of the value returned by Math.sqgrt () into an integer.
Why is this needed?

After completing, be sure to say YES to Item#5 on the lab report.

Lab#1 Recap

This was a great start to your journey into learning Java. Review what we did. Then read Appendix A of
your text (pages 597 through 517). Practice today’s lab again on your own. Just follow along this lab
handout and connect what you are doing to the materials you read from the Appendix.

Assignment 2 (Due in class on Tuesday, February 4): Write a Java program to print out all the prime
numbers between 1 and 100.

Hint: You will need to write a function isPrime () to tell you if a number is prime or not.

What to Hand in: A print out of your Java program along with its output.

After reading, be sure to say YES to Item#4 on the lab report. Write down your reflections as well.
Additional Things to try (Not part of the assighment)

Modify the program to input a number to compute all the primes between 1 and the input number.
Further, input two numbers and compute all the primes between the two input numbers.

Notice the function Math.random () in the Math class. Write a program to generate 10 random
numbers between 1 and 6.

10

