
12/6/2017

1

SORTING

Chapter 8

Comparison of Quadratic Sorts
2

12/6/2017

2

Section 8.7

Merge Sort

Merge

 A merge is a common data processing operation

performed on two ordered sequences of data.

• The result is a third ordered sequence

containing all the data from the first two

sequences

12/6/2017

3

Merge Algorithm

Merge Algorithm

1. Access the first item from both sequences.

2. while not finished with either sequence

3. Compare the current items from the two sequences, copy the smaller

current item to the output sequence, and access the next item from the

input sequence whose item was copied.

4. Copy any remaining items from the first sequence to the output sequence.

5. Copy any remaining items from the second sequence to the output sequence.

Analysis of Merge

 For two input sequences each containing n elements,

each element needs to move from its input sequence

to the output sequence

 Merge time is O(n)

 Space requirements

 The array cannot be merged in place

 Additional space usage is O(n)

12/6/2017

4

Code for Merge

private static void merge(T[] out, T[] left, T[] right) {

// merge left and right into out

// Access first item from all sequences

int i = 0; // left

int j = 0; // right

int k = 0; // out

// while there is data in both left and right

while (i < left.length && j < right.length) {

// find smaller and insert into out

if (left[i].compareTo(right[j]) < 0)

out[k++] = left[i++];

else

out[k++] = right[j++];

}

// Copy remaining items from left into out

while (i < left.length)

out[k++] = left[i++];

// Copy remaining items from right into out

while (j < right.length)

out[k++] = right[j++];

} // merge()

Merge Sort

 We can modify merging to sort a single, unsorted

array

1. Split the array into two halves

2. Sort the left half

3. Sort the right half

4. Merge the two

 This algorithm can be written with a recursive step

12/6/2017

5

(recursive) Algorithm for Merge Sort

Trace of Merge Sort (cont.)

50 60 45 30 90 20 80 15

50 60 45 30 90 20 85 1530 45 50 60 15 20 80 90

15 20 30 45 50 60 80 90

12/6/2017

6

Analysis of Merge Sort

 Each backward step requires a movement of n

elements from smaller-size arrays to larger arrays;

the effort is O(n)

 The number of steps which require merging is log n

because each recursive call splits the array in half

 The total effort to reconstruct the sorted array

through merging is O(n log n)

 Requires a total of n additional storage locations.

Code for Merge Sort

public static void sort(T[] table) {

// A table with 1 element is already sorted

if (table.length > 1) {

// Split table into halves

int halfSize = table.length/2;

T[] left = new Comparable[halfSize];

T[] right = new Comparable[table.length – halfSize];

System.arrayCopy(table, 0, left, 0, halfSize);

System.arrayCopy(table, halfSize, right, 0, table.length-halfSize);

// sort the halves

sort(left);

sort(right);

// merge the halves

merge(table, left, right);

}

} // sort()

12/6/2017

7

Section 8.8

Heapsort

Heapsort

 Merge sort time is O(n log n) but still requires,

temporarily, n extra storage locations

 Heapsort does not require any additional storage

 As its name implies, heapsort uses a heap to store

the array

12/6/2017

8

First Version of a Heapsort Algorithm

 When used as a priority queue, a heap maintains a smallest value at
the top

 The following algorithm

 places an array's data into a heap,

 then removes each heap item (O(n log n)) and moves it back into the
array

 This version of the algorithm requires n extra storage locations

Heapsort Algorithm: First Version

1. Insert each value from the array to be sorted into a priority queue (heap).

2. Set i to 0

3. while the priority queue is not empty

4. Remove an item from the queue and insert it back into the array at position i

5. Increment i

Revising the Heapsort Algorithm

 Instead of using a Min Heap, use a Max heap

 The root contains the largest element

 Then,

 move the root item to the bottom of the heap

 reheap, ignoring the item moved to the bottom

12/6/2017

9

Trace of Heapsort

89

76 74

37 32 39 66

20 26 18 28 29 6

Trace of Heapsort (cont.)

6

18 20

26 28 29 32

37 39 66 74 76 89

12/6/2017

10

Revising the Heapsort Algorithm

 If we implement
the heap as an
array

 each element
removed will be
placed at the end
of the array, and

 the heap part of
the array
decreases by one
element

Algorithm for In-Place Heapsort

Algorithm for In-Place Heapsort

1. Build a heap by rearranging the elements in an unsorted array

2. while the heap is not empty

3. Remove the first item from the heap by swapping it with the

last item in the heap and restoring the heap property

12/6/2017

11

Algorithm to Build a Heap

 Start with an array table of length

table.length

 Consider the first item to be a heap of one item

 Next, consider the general case where the items in

array table from 0 through n-1 form a heap and

the items from n through table.length – 1

are not in the heap

Algorithm to Build a Heap (cont.)

Refinement of Step 1 for In-Place Heapsort

1.1 while n is less than table.length

1.2 Increment n by 1. This inserts a new item into the heap

1.3 Restore the heap property

12/6/2017

12

Analysis of Heapsort

 Because a heap is a complete binary tree, it has log

n levels

 Building a heap of size n requires finding the

correct location for an item in a heap with log n

levels

 Each insert (or remove) is O(log n)

 With n items, building a heap is O(n log n)

 No extra storage is needed

Section 8.9

Quicksort

12/6/2017

13

Quicksort

 Developed in 1962

 Quicksort selects a specific value called a pivot and
rearranges the array into two parts (called
partioning)

 all the elements in the left subarray are less than or
equal to the pivot

 all the elements in the right subarray are larger than
the pivot

 The pivot is placed between the two subarrays

 The process is repeated until the array is sorted

Trace of Quicksort

44 75 23 43 55 12 64 77 33

12/6/2017

14

Trace of Quicksort (cont.)

44 75 23 43 55 12 64 77 33

Arbitrarily select the

first element as the

pivot

Trace of Quicksort (cont.)

55 75 23 43 44 12 64 77 33

Partition the elements so that

all values less than or equal

to the pivot are to the left,

and all values greater than

the pivot are to the right

12/6/2017

15

Trace of Quicksort (cont.)

12 33 23 43 44 55 64 77 75

Partition the elements so that

all values less than or equal

to the pivot are to the left,

and all values greater than

the pivot are to the right

Quicksort Example(cont.)

12 33 23 43 44 55 64 77 75

44 is now in its correct

position

12/6/2017

16

Trace of Quicksort (cont.)

12 33 23 43 44 55 64 77 75

Now apply quicksort

recursively to the two

subarrays

Algorithm for Quicksort

 We describe how to do the partitioning later

 The indexes first and last are the end points of the
array being sorted

 The index of the pivot after partitioning is pivIndex

Algorithm for Quicksort

1. if first < last then

2. Partition the elements in the subarray first . . . last so that the pivot

value is in its correct place (subscript pivIndex)

3. Recursively apply quicksort to the subarray first . . . pivIndex - 1

4. Recursively apply quicksort to the subarray pivIndex + 1 . . . last

12/6/2017

17

Analysis of Quicksort

 If the pivot value is a random value selected from the

current subarray,

 then statistically half of the items in the subarray will be less

than the pivot and half will be greater

 If both subarrays have the same number of elements

(best case), there will be log n levels of recursion

 At each recursion level, the partitioning process involves

moving every element to its correct position—n moves

 Quicksort is O(n log n), just like merge sort

Analysis of Quicksort (cont.)

 The array split may not be the best case, i.e. 50-50

 An exact analysis is difficult (and beyond the scope

of this class), but, the running time will be bounded

by a constant x n log n

12/6/2017

18

Analysis of Quicksort (cont.)

 A quicksort will give very poor behavior if, each
time the array is partitioned, a subarray is empty.

 In that case, the sort will be O(n2)

 Under these circumstances, the overhead of
recursive calls and the extra run-time stack storage
required by these calls makes this version of
quicksort a poor performer relative to the quadratic
sorts

 We’ll discuss a solution later

Code for Quicksort

public static void sort(T[], int first, int last) {

if (first < last) {

// partition the table at pivotIndex

int pivotIndex = partition(table, first, last);

// sort the left half

sort(table, first, pivotIndex-1);

// sort the right half

sort(table, pivotIndex+1, last);

}

} // sort()

12/6/2017

19

Algorithm for Partitioning

44 75 23 43 55 12 64 77 33

If the array is randomly ordered, it

does not matter which element is the

pivot.

For simplicity we pick the element

with subscript first

Trace of Partitioning (cont.)

44 75 23 43 55 12 64 77 33

If the array is randomly ordered, it

does not matter which element is the

pivot.

For simplicity we pick the element

with subscript first

12/6/2017

20

Trace of Partitioning (cont.)

Search for the first value at the left

end of the array that is greater

than the pivot value

up

44 75 23 43 55 12 64 77 33

Trace of Partitioning (cont.)

Then search for the first value at the

right end of the array that is less

than or equal to the pivot value

up down

44 75 23 43 55 12 64 77 33

12/6/2017

21

Trace of Partitioning (cont.)

Exchange these values

up down

44 75 23 43 55 12 64 77 33

Trace of Partitioning (cont.)

Exchange these values

44 33 23 43 55 12 64 77 75

12/6/2017

22

Trace of Partitioning (cont.)

Repeat

44 33 23 43 55 12 64 77 75

Algorithm for Partitioning

12/6/2017

23

Code for partition when Pivot is

the largest or smallest value

Code for partition (cont.)

public static void partition(T[] table, int first, int last) {

// select first element as pivot value

// Initialize up to first and down to last

do {

// Increment up until it selects first element >= pivot or it reaches last

while ((up < last) && (pivot.compareTo(table[up]) >= 0))

up++;

// Decrement down until it select first element < pivot or it reaches first

while ((down > first) && (pivot.compareTo(table[down]) < 0))

down--;

if (up < down) {

// exchange table[up] and table[down]

T temp = table[up];

table[up] = table[down];

table[down] = temp;

}

while (up < down);

// exchange table[first] and table[down]

T temp = table[first]; table[first] = table[down]; table[down] = temp;

// return value of down a pivotIndex

return down;

} // partition()

12/6/2017

24

Revised Partition Algorithm

 Quicksort is O(n2) when each split yields one empty

subarray, which is the case when the array is

presorted

 A better solution is to pick the pivot value in a way

that is less likely to lead to a bad split

 Use three references: first, middle, last

 Select the median of the these items as the pivot

Trace of Revised Partitioning

44 75 23 43 55 12 64 77 33

12/6/2017

25

Trace of Revised Partitioning (cont.)

44 75 23 43 55 12 64 77 33

middlefirst last

Trace of Revised Partitioning (cont.)

44 75 23 43 55 12 64 77 33

Sort these values

middlefirst last

12/6/2017

26

Trace of Revised Partitioning (cont.)

33 75 23 43 44 12 64 77 55

Sort these values

middlefirst last

Trace of Revised Partitioning (cont.)

33 75 23 43 44 12 64 77 55

Exchange middle

with first

middlefirst last

12/6/2017

27

Trace of Revised Partitioning (cont.)

44 75 23 43 33 12 64 77 55

Exchange middle

with first

middlefirst last

Trace of Revised Partitioning (cont.)

44 75 23 43 33 12 64 77 55

Run the partition

algorithm using the

first element as the

pivot

12/6/2017

28

Algorithm for Revised partition

Method

Algorithm for Revised partition Method

1. Sort table[first], table[middle], and table[last]

2. Move the median value to table[first] (the pivot value) by exchanging table[first] and table[middle].

3. Initialize up to first and down to last

4. do

5. Increment up until up selects the first element greater than the pivot value or up has reached last

6. Decrement down until down selects the first element less than or equal to the pivot value or down has

reached first

7. if up < down then

8. Exchange table[up] and table[down]

9. while up is to the left of down

10. Exchange table[first] and table[down]

11. Return the value of down to pivIndex

Summary

Comparison of Sort Algorithms

12/6/2017

29

Sort Review

