
11/14/2017

1

SORTING

Chapter 8

Sorting

Why sort?

To make searching faster!

How?

Binary Search gives log(n) performance.

There are many algorithms for sorting: bubble sort, selection sort,

insertion sort, quick sort, heap sort, …

Why so many?

First we will learn some of them and perhaps we will be able to

answer this question.

[Psst: While performance has a lot to do with it, it isn’t always about that!]

2

11/14/2017

2

Declaring a Generic Method (cont.)

public static void sort (Comparable[] table)

{

// use x.CompareTo(y) to sort

// returns a value <0, if x < y

// return a value == 0, if x == y

// >0 if x > y

} // sort()

Section 8.2

Selection Sort

11/14/2017

3

Selection Sort

 Sorts an array by making several passes through
the array, selecting a next smallest item in the array
each time and placing it where it belongs in the
array

for (int fill=0; fill < n-1; fill++) {

// find posMin in A[i=fill]..A[n-1]

// such that A[posMin] is the smallest

// Swap/exchange items A[fill] and A[posMin]

}

Analysis of Selection Sort

1. for fill = 0 to n – 2 do

2. Initialize posMin to fill

3. for next = fill + 1 to n – 1 do

4. if the item at next is less than the
item at posMin

5. Reset posMin to next

6. Exchange the item at posMin with the one

at fill

This loop is

performed n-1 times

11/14/2017

4

Analysis of Selection Sort (cont.)

1. for fill = 0 to n – 2 do

2. Initialize posMin to fill

3. for next = fill + 1 to n – 1 do

4. if the item at next is less than the
item at posMin

5. Reset posMin to next

6. Exchange the item at posMin with the one

at fill

There are n-1

exchanges

Analysis of Selection Sort (cont.)

1. for fill = 0 to n – 2 do

2. Initialize posMin to fill

3. for next = fill + 1 to n – 1 do

4. if the item at next is less than the
item at posMin

5. Reset posMin to next

6. Exchange the item at posMin with the one

at fill

This comparison is performed

(n – 1 - fill)

times for each value of fill and

can be represented by the

following series:

(n-1) + (n-2) + ... + 3 + 2 + 1

11/14/2017

5

Analysis of Selection Sort (cont.)

1. for fill = 0 to n – 2 do

2. Initialize posMin to fill

3. for next = fill + 1 to n – 1 do

4. if the item at next is less than the
item at posMin

5. Reset posMin to next

6. Exchange the item at posMin with the one

at fill

Analysis of Selection Sort (cont.)

1. for fill = 0 to n – 2 do

2. Initialize posMin to fill

3. for next = fill + 1 to n – 1 do

4. if the item at next is less than the
item at posMin

5. Reset posMin to next

6. Exchange the item at posMin with the one

at fill

For very large n we can ignore

all but the significant term in the

expression, so the number of

• comparisons is O(n2)

• exchanges is O(n)

An O(n2) sort is called a

quadratic sort

11/14/2017

6

Code for Selection Sort (cont.)

public static void sort (Comparable[] table) {

int n = table.length;

for (int fill=0; fill < n-1; fill++) {

//Initialize posMin to fill

int posMin = fill;

for (int next = fill + 1; next < n; next++) {

// if the item at next is less than the item at posMin

if (table[next].compareTo(table[posMin]) < 0) {

// Reset posMin to next

posMin = next;

// Exchange the item at posMin with the one at fill

Comparable temp = table[fill];

table[fill] = table[posMin];

table[posMin] = temp;

}

} // sort()

Section 8.3

Bubble Sort

11/14/2017

7

Bubble Sort

 Also a quadratic sort

 Compares adjacent array elements and exchanges

their values if they are out of order

 Smaller values bubble up to the top of the array

and larger values sink to the bottom; hence the

name

Trace of Bubble Sort (cont.)

1. Initialize exchanges to false

2. for each pair of adjacent array elements

3. if the values in a pair are out of order

4. Exchange the values

5. Set exchanges to true

27

42

60

75

83

[0]

[1]

[2]

[3]

[4]

pass 4

exchanges made 1

The algorithm can be modified to detect

exchanges

11/14/2017

8

Analysis of Bubble Sort

 The number of comparisons and exchanges is represented
by

(n – 1) + (n – 2) + ... + 3 + 2 + 1

 Worst case:

 number of comparisons is O(n2)

 number of exchanges is O(n2)

 Compared to selection sort with its O(n2) comparisons and
O(n) exchanges, bubble sort usually performs worse

 If the array is sorted early, the later comparisons and
exchanges are not performed and performance is improved

Analysis of Bubble Sort (cont.)

 The best case occurs when the array is sorted

already

 one pass is required (O(n) comparisons)

 no exchanges are required (O(1) exchanges)

 Bubble sort works best on arrays nearly sorted and

worst on inverted arrays (elements are in reverse

sorted order)

11/14/2017

9

Code for Bubble Sort

public static void sort (Comparable[] table) {

int n = table.length;

do {

exchanged = false;

for (int i=0; i < n-1; i++) {

if (table[i].compareTo(table[j]) > 0)

// Exchange table[i] and table[i+1]

Comparable temp = table[i];

table[i] = table[i+1];

table[i+1] = temp;

exchanged = true;

while (swapped);

} // sort()

Section 8.4

Insertion Sort

11/14/2017

10

Insertion Sort

 Another quadratic sort, insertion sort, is based on the
technique used by card players to arrange a hand
of cards

 The player keeps the cards that have been picked up so
far in sorted order

 When the player picks up a new card, the player makes
room for the new card and then inserts it in its proper
place

Trace of Insertion Sort

1. for each array element from the second

(nextPos = 1) to the last

2. Insert the element at nextPos where it

belongs in the array, increasing the length of

the sorted subarray by 1 element30

25

15

20

28

[0]

[1]

[2]

[3]

[4]

To adapt the insertion algorithm to an

array that is filled with data, we start

with a sorted subarray consisting of only

the first element

11/14/2017

11

Trace of Insertion Sort Refinement

(cont.)

1. for each array element from the second
(nextPos = 1) to the last

2. nextPos is the position of the element to
insert

3. Save the value of the element to insert in
nextVal

4. while nextPos > 0 and the element
at nextPos – 1 > nextVal

5. Shift the element at nextPos – 1 to
position nextPos

6. Decrement nextPos by 1

7. Insert nextVal at nextPos

15

20

25

28

30

[0]

[1]

[2]

[3]

[4]

nextPos 3

nextVal 28

Analysis of Insertion Sort

 The insertion step is performed n – 1 times

 In the worst case, all elements in the sorted subarray

are compared to nextVal for each insertion

 The maximum number of comparisons then will be:

1 + 2 + 3 + ... + (n – 2) + (n – 1)

 which is O(n2)

11/14/2017

12

Analysis of Insertion Sort (cont.)

 In the best case (when the array is sorted already), only one
comparison is required for each insertion

 In the best case, the number of comparisons is O(n)

 The number of shifts performed during an insertion is one
less than the number of comparisons

 Or, when the new value is the smallest so far, it is the same
as the number of comparisons

 A shift in an insertion sort requires movement of only 1 item,
while an exchange in a bubble or selection sort involves a
temporary item and the movement of three items

 The item moved may be a primitive or an object reference

 The objects themselves do not change their locations

Code for Insertion Sort

public static void sort (Comparable[] table) {

// for each array element from second (nextPos = 1) to the last

for (int nextPos = 1; nextPos < n; nextPos++) {

// nextPos is the position of the element to insert

// Save the value of the element to insert in nextVal

Comparable nextVal = table[nextPos];

//while nextPos>0 and element at nextPos–1> nextVal

while (nextPos > 0

&& table[nextPos-1].compareTo(nextVal) > 0){

// Shift the element at nextPos – 1 to position nextPos

table[nextPos] = table[nextPos-1];

// Decrement nextPos by 1

nextPos--;

}

// Insert nextVal at nextPos

table[nextPos] = nextVal;

}

} // sort()

11/14/2017

13

Section 8.5

Comparison of Quadratic Sorts

Comparison of Quadratic Sorts

11/14/2017

14

Comparison of Quadratic Sorts (cont.)

Comparison of growth rates

Comparison of Quadratic Sorts (cont.)

 Insertion sort

 gives the best performance for most arrays

 takes advantage of any partial sorting in the array and
uses less costly shifts

 Bubble sort generally gives the worst performance—
unless the array is nearly sorted

 Big-O analysis ignores constants and overhead

 None of the quadratic search algorithms are
particularly good for large arrays (n > 1000)

 The best sorting algorithms provide n log n average
case performance

11/14/2017

15

Comparison of Quadratic Sorts (cont.)

 All quadratic sorts require storage for the array

being sorted

 However, the array is sorted in place

 While there are also storage requirements for

variables, for large n, the size of the array

dominates and extra space usage is O(1)

