

Sorting

Why sort? To make searching faster!

How? Binary Search gives log(n) performance.

There are many algorithms for sorting: bubble sort, selection sort, insertion sort, quick sort, heap sort, ...

Why so many?

First we will learn some of them and perhaps we will be able to answer this question.

[Psst: While performance has a lot to do with it, it isn't always about that!]

Declaring a Generic Method (cont.)

```
public static void sort (Comparable[] table)
{
    // use x.CompareTo(y) to sort
    // returns a value <0, if x < y
    // return a value == 0, if x == y
    // >0 if x > y
} // sort()
```

Selection Sort

Section 8.2

Selection Sort

 Sorts an array by making several passes through the array, selecting a next smallest item in the array each time and placing it where it belongs in the array

```
for (int fill=0; fill < n-1; fill++) {
    // find posMin in A[i=fill]..A[n-1]
    // such that A[posMin] is the smallest
    // Swap/exchange items A[fill] and A[posMin]
}</pre>
```

Analysis of Selection Sort

Analysis of Selection Sort (cont.)

Analysis of Selection Sort (cont.)

5.

- This comparison is performed (n - 1 - fill) times for each value of fill and can be represented by the following series: (n-1) + (n-2) + ... + 3 + 2 + 1
- 1. for fill = 0 to n 2 do
- 2. Initialize posMin to fill
- 3. for next = fill + 1 to n 1 do
- 4. if the item at next is less than the item at posMin
 - Reset posMin to next
- 6. Exchange the item at posMin with the one at fill

Analysis of Selection Sort (cont.)

5.

- 1. for fill = 0 to n 2 do
- 2. Initialize posMin to fill
- 3. for next = fill + 1 to n 1 do
- 4. if the item at next is less than the item at posMin
 - Reset posMin to next
- 6. Exchange the item at posMin with the one at fill

Analysis of Selection Sort (cont.)

5.

- For very large *n* we can ignore all but the significant term in the expression, so the number of • comparisons is $O(n^2)$ • exchanges is O(n)
 - An O(n²) sort is called a quadratic sort

- 1. for fill = 0 to n 2 do
- 2. Initialize posMin to fill
- 3. for next = fill + 1 to n 1 do
- 4. if the item at next is less than the item at posMin
 - Reset posMin to next
- 6. Exchange the item at posMin with the one at fill

Code for Selection Sort (cont.)

```
public static void sort (Comparable[] table) {
   int n = table.length;
   for (int fill=0; fill < n-1; fill++) {
       //Initialize posMin to fill
      int posMin = fill;
      for (int next = fill + 1; next < n; next++) {
        // if the item at next is less than the item at posMin
        if (table[next].compareTo(table[posMin]) < 0) {</pre>
           // Reset posMin to next
           posMin = next;
       // Exchange the item at posMin with the one at fill
       Comparable temp = table[fill];
       table[fill] = table[posMin];
       table[posMin] = temp;
   }
} // sort()
```

Bubble Sort

Section 8.3

Bubble Sort

- □ Also a quadratic sort
- Compares adjacent array elements and exchanges their values if they are out of order
- Smaller values bubble up to the top of the array and larger values sink to the bottom; hence the name

Trace of Bubble Sort (cont.)

	4		pass
1. Initialize exchanges to false	1	ıade	exchanges m
2. for each pair of adjacent array elements			
3. if the values in a pair are out of order			
4. Exchange the values		27	[0]
5. Set exchanges to true		42	[1]
		60	[2]
		75	[3]
The algorithm can be modified to detect exchanges		83	[4]

Analysis of Bubble Sort

 The number of comparisons and exchanges is represented by

 $(n-1) + (n-2) + \dots + 3 + 2 + 1$

Worst case:

number of comparisons is $O(n^2)$

- **number** of exchanges is $O(n^2)$
- □ Compared to selection sort with its $O(n^2)$ comparisons and O(n) exchanges, bubble sort usually performs worse
- If the array is sorted early, the later comparisons and exchanges are not performed and performance is improved

Analysis of Bubble Sort (cont.)

The best case occurs when the array is sorted already

• one pass is required (O(n) comparisons)

- no exchanges are required (O(1) exchanges)
- Bubble sort works best on arrays nearly sorted and worst on *inverted* arrays (elements are in reverse sorted order)

Code for Bubble Sort

Insertion Sort

Section 8.4

Insertion Sort

- Another quadratic sort, insertion sort, is based on the technique used by card players to arrange a hand of cards
 - The player keeps the cards that have been picked up so far in sorted order
 - When the player picks up a new card, the player makes room for the new card and then inserts it in its proper place

Trace of Insertion Sort

[0]	30	
[1]	25	
[2]	15	
[3]	20	
[4]	28	

- for each array element from the second (nextPos = 1) to the last
- Insert the element at nextPos where it belongs in the array, increasing the length of the sorted subarray by 1 element

To adapt the insertion algorithm to an array that is filled with data, we start with a sorted subarray consisting of only the first element

Trace of Insertion Sort Refinement

5.

(cont.)

nextPos		3
nextVal		28
[0]	15	
[1]	20	

[3] 28

[4] 30

[2] 25

- 1. for each array element from the second (nextPos = 1) to the last
- 2. ${\tt nextPos}$ is the position of the element to insert
- Save the value of the element to insert in nextVal
- 4. while nextPos > 0 and the element
 at nextPos 1 > nextVal
 - Shift the element at nextPos 1 to position nextPos
- 6. Decrement nextPos by 1
- 7. Insert nextVal at nextPos

Analysis of Insertion Sort

- \square The insertion step is performed n-1 times
- In the worst case, all elements in the sorted subarray are compared to nextVal for each insertion
- □ The maximum number of comparisons then will be:

$$1 + 2 + 3 + ... + (n - 2) + (n - 1)$$

 \square which is $O(n^2)$

Analysis of Insertion Sort (cont.)

- In the best case (when the array is sorted already), only one comparison is required for each insertion
- \Box In the best case, the number of comparisons is O(n)
- The number of shifts performed during an insertion is one less than the number of comparisons
- Or, when the new value is the smallest so far, it is the same as the number of comparisons
- A shift in an insertion sort requires movement of only 1 item, while an exchange in a bubble or selection sort involves a temporary item and the movement of three items
 - The item moved may be a primitive or an object reference
 - The objects themselves do not change their locations

Code for Insertion Sort

```
public static void sort (Comparable[] table) {
   // for each array element from second (nextPos = 1) to the last
   for (int nextPos = 1; nextPos < n; nextPos++) {</pre>
       // nextPos is the position of the element to insert
       // Save the value of the element to insert in nextVal
       Comparable nextVal = table[nextPos];
       //while nextPos>0 and element at nextPos-1> nextVal
       while (nextPos > 0
                && table[nextPos-1].compareTo(nextVal) > 0) {
          // Shift the element at nextPos - 1 to position nextPos
          table[nextPos] = table[nextPos-1];
         // Decrement nextPos by 1
          nextPos--;
      // Insert nextVal at nextPos
      table[nextPos] = nextVal;
   }
} // sort()
```

Comparison of Quadratic Sorts

Section 8.5

Comparison of Quadratic Sorts

	Number of Comparisons		Number of Exchanges	
	Best	Worst	Best	Worst
Selection sort	$O(n^2)$	$O(n^2)$	O(n)	O(n)
Bubble sort	O(n)	$O(n^2)$	O (1)	$O(n^2)$
Insertion sort	O(n)	$O(n^2)$	O(n)	$O(n^2)$

Comparison of Quadratic Sorts (cont.)

Comparison of growth rates

n	<i>n</i> ²	n log n
8	64	24
16	256	64
32	1,024	160
64	4,096	384
128	16,384	896
256	65,536	2,048
512	262,144	4,608

Comparison of Quadratic Sorts (cont.)

- Insertion sort
 - gives the best performance for most arrays
 - takes advantage of any partial sorting in the array and uses less costly shifts
- Bubble sort generally gives the worst performance unless the array is nearly sorted
 - Big-O analysis ignores constants and overhead
- None of the quadratic search algorithms are particularly good for large arrays (n > 1000)
- The best sorting algorithms provide n log n average case performance

Comparison of Quadratic Sorts (cont.)

- All quadratic sorts require storage for the array being sorted
- □ However, the array is sorted in place
- While there are also storage requirements for variables, for large n, the size of the array dominates and extra space usage is O(1)