
CS206 Lec03

CS206

More Inheritance
Generics

!1

CS206

From Last Class
Abstract, Encapsulated, Modular

• Abstract
• Things/properties shared by all instances of the

class. (class should be pencil, not YellowPencil)
• Encapsulated

• Others cannot “see” what is inside the class. So
the inside can change without effect on other
classes.

• Modular
• There are many interacting components.

• If one fails, it is easier to identify and debug
(assuming proper encapsulation).

!2

CS206 Lec03

OOP Design

• Instance variables keep track of the
states of an object
▫ the only place data is stored

• Methods assume all instance variables
are always up-to-date
• why?

• Each method is responsible for one task
and updating the related variables only

!3

CS206 Lec03

Access in Java
Implementation / Enforcement of Encapsulation

• public
• Usable by every other class

• “” (pronounced package)
• Usable by every class in the “package”

• All assignments in this class will use a single package
• denoted by “package xxx.yyy.zzz” at top of file
• https://docs.oracle.com/javase/8/docs/api/
• packages are usually closely aligned with directory structures

• protected

• Usable by all extenders of the class
• private

• Usable only within the class

!4
Per Encapsulation, always use most restrictive sensible access

https://docs.oracle.com/javase/8/docs/api/

CS206

CSStudent and Inheritance

!5

public class Student {
private String name;
private final String
id;

}

public class CSStudent extends
Student {
private boolean isMajor;

}
Go to eclipse and work through toString methods

CS206 Lec03

Source Code Organization

• Good Practice: Each project under its
own subdirectory
▫ directory name = project name
▫ Eclipse follows this practice

• One public class per file
• Name of the file must match public class

name

!6

CS206 Lec03

Method Overriding

• Inherited methods from the superclass can
be redefined/changed
▫ “signature” stays the same
▫ signature = name+type of all args

▫ @Override
▫ Not required (it is for this class) but is “best

practice” to use
• The appropriate version to call is determined at run

time

• toString is overridden, twice!
!7

CS206 Lec03

Method Overloading

• Overloading occurs
when two methods
have the same name
but different
parameters

• Other languages may
not allow
overloading.

int a(int x) ;
int a(int x, int y);
int a(float y);
int a();

int a(int x);
int a(int y);
float a(int x);

!8

CS206 Lec03

Parsing strings
• Two basic methods

• Scanner — previously discussed
• to split on something other than “ “, use useDelimiter(“delim”)

method 
 
 String s=“get,thee,to,a,nunnery”;  
 Scanner s2 = new Scanner(line);  
 s2.useDelimiter(",");

• split method of String string.split(delim)
• split a string into an array of Strings based on matching delimiter  
 
String s = “neither,a,borrower,nor,a,lender,be”;  
String[] tokens = s.split(",");

!9

CS206

Parsing strings
Putting it all together

!10

Create a class with the following methods:

/* if true in future, use Scanner, if false, use String.split */
void setUseScanner(boolean uS);

/* prints every word, one word per line in the named file */
void words(String fileName);

/* prints every word after the number in startingWord
 one word per line */

void words(String fileName, int startingWord);

/* print numWords after startingWord, one word per line /*
void words(String fileName, int startingWord, int numWords);

In Java, this is referred to as “implementing an interface”
There are lots of reasons to specify an interface, this is one.

CS206 Lec03

Generics

• A way to write classes and methods that
can operate on a variety of data types
without being locked into specific types
at the time of definition

• Write definitions & implementations with
“Generic” parameters

• The generics are instantiated (locked
down) when objects are created

!11

CS206 Lec03

Generic Methods

!12

import java.util.Random;
/***********************
 * Author: G. Towell
 * Created: August 28, 2019
 * Modified: August 29, 2019
 * Purpose:
 * Generic Methods
 ***********************/
public class Genere {
 public static void main(String[] args) {
 Integer[] jj = {1,2,3,4,5,6, 7, 8, 9}; // NOTE AUTOBOXING!!!
 Genere.randomize(jj);
 for (int j : jj)
 System.out.println(j);
 String[] ss = {"A", "B", "c", "d", "E", "F"};
 Genere.randomize(ss);
 for (String s : ss)
 System.out.println(s);
 }

 public static <T> void randomize(T[] data) {
 Random r = new Random();
 for (int i=0; i<data.length; i++) {
 int tgt = r.nextInt(data.length);
 swap(data, tgt, i);
 }
 }

}

Write a generic swap method!

CS206 Lec03

Generic Class

!13

import java.util.Scanner;

public class Genere2<A> {
 private double amt;
 private A other;
 public Genere2(A other, double amt) {
 this.other = other;
 this.amt=amt;
 }

 public static void main(String[] args)
 {
 Genere2<String> gg = new Genere2<String>("ASDF", 44.5);
 System.out.println(gg);
 Genere2<Double> g3 = new Genere2<Double>(99.5, 44.5);
 System.out.println(g3);
 Genere2<Scanner> g4 = new Genere2<Scanner>(new Scanner("Now is the time for all good"),
99.8);
 System.out.println(g4);
 }

}

write a toString function for this class

CS206 Lec02

Generics Restrictions

• No instantiation with primitive types
• Genre<Double> ok, but
Genere<double> is not

• Can not declare static instance variables of a
parameterized type

• Can not create arrays of parameterized types
• but you can create an array of Object

then cast
• (T[])new Object[10]

!14

CS206 Lec02

Nested Class
• A class defined inside the definition of another class
• When defining a class that is strongly affiliated with

another
▫ help increase encapsulation and reduce undesired name

conflicts.
• Nested classes are a valuable technique when

implementing data structures
▫ represent a small portion of a larger data structure
▫ an auxiliary class that helps navigate a primary data

structure
▫ ONLY place that public instance variables are acceptable

▫ They aren’t really public

!15

