CS206

Midterm
Iterators
Recursion

CS206

Lecll

Midterm

e Q1 — reading code

e 16 pts — mean 14.2
e Q2 — copy into array list

e 20 pts — mean 17.1
e Q3 — Big-O

e 16 pts — mean 13.4
e Q4 — bubble swap on linked lists

e 24 pts — mean 15.9
e Q5 — queue copying

e 24 pts — mean 18.9
e Overall mean 80.3

CS206 2

01

What 1s the output?

A. PartA java
B. Overloaded.java

C. SNums.java
D. AlFunc.java

CS206

Q2

Write a method that takes as input two arrays
of Strings and copies only those strings that
occur at the same index in both arrays to a
new ArrayList, which 1s returned.

copier.java

CS206

Q3

Complexity

TD.java

CS206 5

Q4

BubbleSwap on a doubly linked list

BubbleSwapList.java

CS206 6

Q5

Merge 2 queues into one, keeping sorted order

ArrayQueue.java merge function

CS206 7

Iterators

e Abstracts the process of scanning through a sequence of elements
(traversal)

 an interface with three methods
e boolean hasNext()
e true if the iteration has more elements
e E next()
e Returns the next element
e void remove()

e Removes from the underlying collection the last element
(optional)

e Combination of these two methods allow a general traversal structure
while (iter.hasNext ()) {

iter.next () ;

}

CS206 8 Lecll

Why Iterators?

e They encapsulate traversal

e Container independence

o allows traversal without knowledge of
underlying data structure implementation,
l.e. .length Or .size ()

o allows switching out the underlying data
structure while causing the least amount of
code change else where

CS206 9 Lecl3

Tterable Interface

e An interface that with a single method:

o iterator (): returns an iterator of the
elements in the collection

e Each call to iterator () returns a new
iterator instance, thereby allowing
multiple independent traversals of a
collection

CS206 10 Lecll

[terator example

IteratorTest.java

1 — no iterator, dies on remove
2 — no iterator, unexpected behavior
3 — iterator, success

CS206 11

Writing to Files

e In the simplest case as easy as println

e outputterjava

e Lots for for complex scenarios
e java.io
e java.nio.channel
e java.nio.files

CS206 12

http://java.io

Recursion

A method that calls itself, either directly or indirectly

Importantly, need a way to stop

public void a(int c)

{
System.out.println("A" + c);
a(c-1);

I3

public void b(int c)

{
System.out.println("B" + c);
if (c<=0) return;
b(c-1);

¥

Class Recurser

CS206 13

