
CS206 Lec01

Intro to Data Structures

CS206

Fall 2020

1

CS206

Course Goals

2

1.Become a better computer scientist
2.Learn about common data structures

1. Implementation
2. How and when to use each

3.Understand Object Oriented program
design and its implementation in Java

4.Develop an understanding of UNIX
5.Become a better Java programmer

CS206 Lec01

Things to Know
• Course website

▫ www.cs.brynmawr.edu/cs206
▫ usually updated before and after each class

▫ lecture notes and code sample will be posted before class
▫ updates after class with revisions, etc

▫ Syllabus
▫ www.cs.brynmawr.edu/cs206/syllabus.html

▫ usually updated on weekend for next week’s material
▫ Homeworks

▫ posted on class web site
▫ Approximately weekly, assigned Friday.
▫ Typically due on Thursday before midnight
▫ Help in lab (Park 231) Sunday-Thursday evening

▫ starting next week
▫ Homeworks should trail lectures so you should be able to start immediately.

3

http://www.cs.brynmawr.edu/cs206
http://www.cs.brynmawr.edu/cs206/syllabus.html

CS206 Lec01

More Things to Know
• CS account

▫ If you do not have a cs account, you will

• Lab:
• F 2:40pm-4:00pm
• Attendance in lab not required, but lab workl must

be done
• I will ask for something handed in with each lab
• Must be submitted by 11:59pm Saturday

• submit by email to
gtowell206@cs.brynmawr.edu

• Software: Java, Visual Studio Code, Unix

4

mailto:gtowell206@cs.brynmawr.edu

CS206

Textbooks

5

Neither is required.
Both are good references
Both should be on reserve in Collier

CS206

Grading

• Homework 45%
• Almost all of you time outside of class

will be on homework.
• Lab 5%
• Midterms (2) 32%

• Oct 6
• Nov 3

• Final exam 18%
6

CS206

Data Structure?

• Wikipedia: a data structure is
a data organization, management, and
storage format that enables efficient access
and modification

• We will talk about approximately 8 data
structures

• How to use

• Why to choose this one

• How to implement

7

CS206

Data Structures

• Array
• ArrayList

• it grows and shrinks
• Maps / Hashtables

• going beyond numeric indexes
• Stacks and Queues
• Linked Lists
• Trees
• Graphs

8

CS206

Programming techniques and concepts

• Object oriented programming

• inheritance, generics, …

• Searching

• Sorting

• Recursion

• Asymptotic Analysis

9

CS206

Java

• “Object Oriented” Language

• Data Types

• Base

• fixed set

• Initial lower case letter (e.g. int)

• Objects (Classes)

• User extensible

• Initial capital letter (by convention)

10

CS206 Lec01

Base/Primitive Types

• Primitive types define memory used to
store the data

11

Extant definitions of primitives
subject to change

CS206

Testing max Integer

12

/**
 * Tiny class to test bounds of maximum integer
 * @author gtowell
 * created: Sep 2020
 */
public class BoundTest {
 public static void main(String[] args) {
 int ii = 1;
 for (int jj=1; jj<32; jj++) {
 ii *= 2;
 System.out.println("Pow " + jj + " " + ii);
 }

 for (int jj=0; jj<10; jj++) {
 System.out.println("minus " + jj + " " + (ii-jj));
 }
 }
}

CS206 Lec01

Classes and Variables
• A class is a description of what an object stores

(its data) and how it functions
▫ instance variables
▫ methods

▫ Every variable is either a base type or a reference
to an object

• Every object is an instance of a class
• Object names — initial capital
• instances — initial lower case

• camel case thereafter

13

CS206 Lec01

Creating and Using Objects

• In Java, a new object is created by using the new
operator followed by a call to a constructor for
the desired class.

• A constructor is a special method that shares the
same name as its class. The new operator returns
a reference to the newly created instance.
• every method other than a construction must

give the type of information it returns
• Almost everything in Java is a class

• More properly, almost all variables in Java
store references to instances of a class

14

CS206

/**
 * A simple class from a simple song
 * Created: Sep 2020,
 * @author gtowell
 */
public class Inchworm
{
 /**
 * The current measurement status of the inchworm
 */
 private int measurement;
 /**
 * Create a default inchworm. It starts measuring at 1.
 */
 public Inchworm() {
 this.measurement=1;
 } Lec01

Defining Objects

CS206

 /**
 * Create an inchworm starting at something other than 1.
 * @param startingMeasurement the starting measurement
 */
 public Inchworm(int startingMeasurement) {
 this.measurement = startingMeasurement;
 }
 /**
 * A copy constructor. It copies the state of an existing inchworm
 * @param iw the inchworm to be copied
 */
 public Inchworm(Inchworm iw) {
 this.measurement = iw.getMeasurement();
 }
 /**
 * Get accessor for measurement. Get accessors need NOT be commented
 * @return the measurement
 */
 public int getMeasurement() {
 return this.measurement;
 }

Class Part2

16

CS206

 /**
 * Change the measurement by doubling. It is all inchworms can do.
 */
 public void doubleM() {
 this.measurement *= 2;
 }
 /**
 * The toString function. Normally this does not need a comment.
 * @Override indicates that function is defined in ancestor
 */
 @Override
 public String toString() {
 return "The marigold measures " + this.measurement + " inches";
 }
 /**
 * Put the inchworm back in its base state
 */
 public void reset() {
 this.measurement=1;
 }

Class Part3

17

CS206

Class Part4

18

/**
 * Function to be executed at start.
 * @param args NOT used.
 */
 public static void main(String[] args) {
 Inchworm inchworm = new Inchworm();
 inchworm.doubleM();
 System.out.println(inchworm);
 Inchworm inchworm2 = new Inchworm(inchworm);
 inchworm2.doubleM();
 System.out.println(inchworm2 + " " + inchworm);
 }

CS206 Lec01

Access Control Modifiers

• public — all classes may access

• private — access only within that class.

• protected — access only from decendents
• “” (read as package) — access only by classes within

the package
• (I hate significant whitespace)

• The package is generally the code you are working
on.

• packages very useful in large development projects
(>10 people)

• DO NOT use in this class
19

CS206

Static
• When a variable or method of a class is declared

as static, it is associated with the class as a
whole, rather than with each individual instance
of that class.

• Only acceptable use (at least for this course):
• In methods …

• public static void main(String[]
args)

• In variables .. to declare constants
• public static final double
GOLDEN_MEAN =1.61803398875;

20

CS206 Lec01

Casting (of base types)

• Assignment
REQUIRES type
equality

• Use casting to
change type

• Must explicitly cast if
there is a possible
loss of precision

private void trial()
 {
 int x = 5;
 double y = 1.2;
 y = x;
 x = y;

 y = (double) x;
 x = (int) y;
 }

21

CS206 Lec01

Object Casting

• Widening cast –
• to something that was

extended from
• Narrowing cast –

• to an extended class
• Java will perform an

implicit widening cast, but
not a narrowing
• Narrowing cast may

assume information
that is not present.

22

public class Caster {
 private class A {}
 private class B extends A {
 private int bvar;
 public B() { bvar = 1; }
 }
 public void tester() {
 A a = new A();
 B b = new B();
 A aa = b;
 B bb = (B)a;
 }
}

CS206 Lec01

.equals: Object Equality

• Do not use ==

• Use == only
when
comparing base
types

• Review your
strings and
String class
methods

23

public class StringEqual {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");
 System.out.println("str1==str2: "

+ str1 == str2);
 System.out.println("str1==str2: "

+ (str1 == str2));
 System.out.println("str1.equals(str2): "

+ str1.equals(str2));
 }
}

CS206 Lec01

Wrapper Types

• Most data structures and algorithms in
Java’s libraries only work with object
types (not base types).

• To get around this obstacle, Java defines
a wrapper class for each base type.

• Implicitly converting between base types
and their wrapper types is known as
automatic boxing and unboxing.

24

CS206

Autoboxing and unboxing

25

public class Wrapper
{
 public void w1(Integer ii) {
 System.out.println(ii);
 int i3 = ii; // auto unboxing
 System.out.println(i3*i3);
 System.out.println(i3*ii); // auto unboxing
 }
 public static void main(String[] args) {
 Wrapper w = new Wrapper();
 w.w1(5); // autoboxing
 }
}

CS206 Lec01

What you should know/review

• variables

• expressions

• operators

• methods
▫ parameters
▫ return value

• conditionals
• for/while loops

• class design and
object construction
▫ instance variables
▫ constructor
▫ getters/setters
▫ class methods
▫ new

• arrays

• arrays of objects
• String

26

CS206

Homework / Quizlet

1.You have created a complete and correct Java program
in the file Hello.java in the directory /home/YOU/cs206.
What are the unix commands you would issue to: a) get
to that directory, b) compile the program; c) run the
program.

2.Write a complete program that prints “Hello World”
1000 times

3.Write a complete program to store the numbers
100-10000 in an array

4.What is overloading of methods? Given an example?
27

On a blank sheet of paper write answers to the following.
When complete, use phone to take a picture, then send pic to
gtowell206@cs.brynmawr.edu

