CS206

More Inheritance
Generics

CS206 1 Lec03

Software Design Goals

e Robustness
o software capable of error handling and recovery
o programs should never crash
o ending abruptly is not crashing
e Adaptability

o software able to evolve over time and changing conditions
(without huge rewrites)

e Reusability

o same code is usable as component of different systems in
various applications

o The story of Mel —

CS206 2 Lec02

https://www.cs.utah.edu/~elb/folklore/mel.html

OOP Design Principles

e Modularity

e programs should be composed of "modules” each of which do their own
thing

e each module is separately testable
e Large programs are built by assembling modules
e Objects (Classes) are modules
e Abstraction
e Get to the core — non-removable essence of a thing
e Most pencils are yellow, but yellowness does not required
e Encapsulation
e Nothing outside a class should know about how the class works.

e For instance, does the Object class have any instance variables.
(Of what type?)

e Allows programmer to totally change internals without external effect

CS206 3 Lec02

OOP Design

e Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

e Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

CS206 4 Lec02

Constructors

e Constructors are never inherited

e A class may invoke the constructor of the class it extends via a call
to super with the appropriate parameters

e €.7J. super ()
e super must be in the first line of constructor

e If no explicit call to super, then an implicit call to the zero-
parameter super will be made

e A class make invoke other constructors of their own class using
this ()

e this must be first

e Cannot explicitly use both super and this in single
constructor

e See FileOpen.java for example

CS206 5 Lec02

try/catch — with resources

public void readOneLineTC(String filename) public void readOneLineTCR(String filename)
{ {
. try (BufferedReader br = new BufferedReader(
ii;firedReader br; new FileReader(filename));) {

br.readLine();
br = new BufferedReader (

new FileReader(filename)); } catch (FileNotFoundException e) {
br.readLine(): System.err.println(“Open " + e);
} catch (FileNotFoundException fnf) { } catch (IOException e) {

System.err.println("Reading " + e);

System.err.println(“No file " + e);

} catch (IOException e) { } !
System.err.println('"Reading " + e);
} finally {
if (br!=null) {
try {

br.close();
} catch (IOException ioe) {

System.err.println("Close" + ioe); ﬁnally — COde that WILL be
executed

Close can throw an exception
See FileOpen.java so 1t too must be caught
CS206 6

Method Overriding

e Inherited methods from the superclass
can be redefined/changed

o “'signature” stays the same
o signature = name+type of all args

e The appropriate version to call is determined at
run time

e Most common overrides
e toString

* equals

CS206 7 Lec03

DogDriver

DogDriver.java

CS206 8

Parsing strings

e Split method of String
string.split (String regexp)

e split a string into an array of Strings
based on matching delimiter. Then go
through the array appropriately

StringSplitter.java

CS206 9 Lec03

Generics

e A way to write classes and methods that
can operate on a variety of data types
without being locked into specific types
at the time of definition

o Write definitions & implementations with
“Generic” parameters

e The generics are instantiated (locked
down) when objects are created

CS206 10 Lec03

Generic Methods

import java.util.Random;

public class GenericMethod {
public static void main(String[] args) {
Integer[] jj={1, 2, 3, 4, 5, 6, 7, 8, 9 };
new GenericMethod().randomize(jj);
for (int j : jj)
System.out.println(j);
String[] ss = { "A", "B", "c", "d", "E", "F" };
new GenericMethod().randomize(ss);
for (String s : ss)
System.out.println(s);

}

public <T> void randomize(T[] data) {
Random r = new Random();
for (int 1 = 0; i < data.length; i++) {
int tgt = r.nextInt(data.length);
swap(data, tgt, i);
T}

— generic swap method

— use reflection to check class

CS206 11

Lec03

Generic Class

import java.io.BufferedReader;
import java.io.StringReader;

write a toString function

public class GenericClass<A> { for this class

private double amount;

private A otherValue;

public GenericClass(A other, double amt) {
this.otherValue = other;
this.amount = amt;

public static void main(String[] args) { _ _
Gener1cC1ass<$tr1n%> String = new GenericClass<String>("ASDF", 24.5);
System.out.println(gS rlng); _
GenericClass<Double> gDouble = new GenericClass<Double>(99.5, 44.5);
System.out.println(gDouble); _
GenericClass<BufferedReader> gBR = new GenericClass<BufferedReader>(
new BufferedReader(new StringReader("When in the course")), 99.8);
1 System.out.println(gBR);

CS206 12 Lec03

Generics Restrictions

e No instantiation with primitive types

e Genre<Double> 0K, but
Genere<double> IS ot

e Can not declare static instance variables of a
parameterized type

e Can not create arrays of parameterized types

e but you can create an array of Object
then cast

e (T[])new Object[10]

CS206 13 Lec02

Nested Class

e A class defined inside the definition of another class

e When defining a class that is strongly affiliated with
another

o help increase encapsulation and reduce undesired name
conflicts.

o Nested classes are a valuable technique when
implementing data structures
o represent a small portion of a larger data structure

o an auxiliary class that helps navigate a primary data
structure

o ONLY place that public instance variables are acceptable
o They aren’t really public

CS206 14 Lec02

Nested Class Example

ClassNester.java

CS206 15

