
CS206 Lec03

CS206

More Inheritance

Generics

1

CS206 Lec02

Software Design Goals

• Robustness
▫ software capable of error handling and recovery
▫ programs should never crash

▫ ending abruptly is not crashing

• Adaptability
▫ software able to evolve over time and changing conditions

(without huge rewrites)

• Reusability
▫ same code is usable as component of different systems in

various applications
▫ The story of Mel — https://www.cs.utah.edu/~elb/folklore/mel.html

2

https://www.cs.utah.edu/~elb/folklore/mel.html

CS206 Lec02

OOP Design Principles
• Modularity

• programs should be composed of “modules” each of which do their own
thing

• each module is separately testable

• Large programs are built by assembling modules

• Objects (Classes) are modules

• Abstraction

• Get to the core — non-removable essence of a thing

• Most pencils are yellow, but yellowness does not required

• Encapsulation

• Nothing outside a class should know about how the class works.

• For instance, does the Object class have any instance variables.
(Of what type?)

• Allows programmer to totally change internals without external effect

3

CS206 Lec02

OOP Design

• Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

• Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

4

CS206 Lec02

Constructors
• Constructors are never inherited

• A class may invoke the constructor of the class it extends via a call
to super with the appropriate parameters

• e.g. super()

• super must be in the first line of constructor

• If no explicit call to super, then an implicit call to the zero-
parameter super will be made

• A class make invoke other constructors of their own class using
this()

• this must be first

• Cannot explicitly use both super and this in single
constructor

• See FileOpen.java for example

5

CS206

try/catch — with resources

6

 public void readOneLineTC(String filename)
 {
 BufferedReader br;
 try {
 br = new BufferedReader(
 new FileReader(filename));
 br.readLine();
 } catch (FileNotFoundException fnf) {
 System.err.println(“No file " + e);
 } catch (IOException e) {
 System.err.println("Reading " + e);
 } finally {
 if (br!=null) {
 try {
 br.close();
 } catch (IOException ioe) {
 System.err.println("Close" + ioe);
 }
 }
 }
 }

public void readOneLineTCR(String filename)
 {
 try (BufferedReader br = new BufferedReader(
 new FileReader(filename));) {
 br.readLine();
 // close unnecessary in this formulation
 } catch (FileNotFoundException e) {
 System.err.println(“Open " + e);
 } catch (IOException e) {
 System.err.println("Reading " + e);
 }
 }

finally == code that WILL be
executed

Close can throw an exception
so it too must be caughtSee FileOpen.java

CS206 Lec03

Method Overriding

• Inherited methods from the superclass
can be redefined/changed
▫ “signature” stays the same
▫ signature = name+type of all args

• The appropriate version to call is determined at
run time

• Most common overrides
• toString
• equals

7

CS206

DogDriver

8

DogDriver.java

CS206 Lec03

Parsing strings

• Split method of String
string.split(String regexp)

• split a string into an array of Strings
based on matching delimiter. Then go
through the array appropriately

StringSplitter.java

9

CS206 Lec03

Generics

• A way to write classes and methods that
can operate on a variety of data types
without being locked into specific types
at the time of definition

• Write definitions & implementations with
“Generic” parameters

• The generics are instantiated (locked
down) when objects are created

10

CS206 Lec03

Generic Methods

11

import java.util.Random;
/***********************
 * @author gTowell
 * Created: August 28, 2019
 * Modified: Jan 24, 2019
 * Purpose:
 * Generic Methods
 ***********************/
public class GenericMethod {
 public static void main(String[] args) {
 Integer[] jj = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // NOTE AUTOBOXING!!!
 new GenericMethod().randomize(jj);
 for (int j : jj)
 System.out.println(j);
 String[] ss = { "A", "B", "c", "d", "E", "F" };
 new GenericMethod().randomize(ss);
 for (String s : ss)
 System.out.println(s);
 }

 public <T> void randomize(T[] data) {
 Random r = new Random();
 for (int i = 0; i < data.length; i++) {
 int tgt = r.nextInt(data.length);
 swap(data, tgt, i);
 }}}

— generic swap method
— use reflection to check class

CS206 Lec03

Generic Class

12

import java.io.BufferedReader;
import java.io.StringReader;
/**
 * Simple generic class example
 * @author gtowell
 *
 * @param <A>
 */
public class GenericClass<A> {
 /** A non-generic value */
 private double amount;
 /** A generic value */
 private A otherValue;
 /**
 * Constructor.
 * @param other the generic value
 * @param amt a double value.
 */
 public GenericClass(A other, double amt) {
 this.otherValue = other;
 this.amount = amt;
 }
 public static void main(String[] args) {
 GenericClass<String> gString = new GenericClass<String>("ASDF", 24.5);
 System.out.println(gString);
 GenericClass<Double> gDouble = new GenericClass<Double>(99.5, 44.5);
 System.out.println(gDouble);
 GenericClass<BufferedReader> gBR = new GenericClass<BufferedReader>(
 new BufferedReader(new StringReader("When in the course")), 99.8);
 System.out.println(gBR);
 }}

write a toString function
for this class

CS206 Lec02

Generics Restrictions

• No instantiation with primitive types

• Genre<Double> ok, but
Genere<double> is not

• Can not declare static instance variables of a
parameterized type

• Can not create arrays of parameterized types

• but you can create an array of Object
then cast
• (T[])new Object[10]

13

CS206 Lec02

Nested Class

• A class defined inside the definition of another class
• When defining a class that is strongly affiliated with

another
▫ help increase encapsulation and reduce undesired name

conflicts.
• Nested classes are a valuable technique when

implementing data structures
▫ represent a small portion of a larger data structure
▫ an auxiliary class that helps navigate a primary data

structure
▫ ONLY place that public instance variables are acceptable

▫ They aren’t really public

14

CS206

Nested Class Example

15

ClassNester.java

