CS206

Analysis of Algorithms

CS206 1 Lec07

Running Time

e The run time of a program depends on
o efficiency of the algorithm/implementation
o Size of input
o what else?

e The running time typically grows with input
size

e How do you measure running time?
e CPU usage?
e Reliability?

CS206 2 Lec07

Timing Code

public class Timer {
private static final int REPS = 10;
private static final int NANOS_SEC = 1000000000;

public double doSomething(int[] data) {
double k = 0;
for (long i = 0; i < data.length; i++) {
for (long j = 0; j < data.length; j++) {
k += Math.sqrt(i x j);
}
¥

return k;

¥

public static void main(String[] args) {

Timer timer = new Timer();

long datal[]l = new long[REPS];

for (int j = 1000; j < 10001; j = j + 1000) {

for (int 1 = 0; i < REPS; i++) {

long start = System.nanoTime();
timer.doSomething(new int[j]);
long finish = System.nanoTime();
datali]l = (finish - start);
System.out.println(String.format("%d %.4f", j, (double) (finish - start) /

NANOS_SEC)) ;

CS206 3

Experimental Studies

e Write a program
implementing the
algorithm

1.0000

0.7500

o
e Run it with different input] 8
sizes and compositions : :
e Record times and plot
results ©
0.2500 8
6
©
o
0.0000 O ©
N (size of input data)
CS206 Lec07

Limitation of Experiments

e You have to implement the algorithm

e You have to generate inputs that represent
all cases

e Comparing two algorithms requires exact
same hardware and software
environments

e Even then timing is hard
e multiprocessing
o file i/o

CS206 5 LecO7

Theoretical Analysis

e Use a high-level description of algorithm
o pseudo-code

e Running time as a function input size, n
e Ignore other details of the input

e Independent of the hardware/software
environment

CS206 6 Lec07

Primitive Operations

e Basic computations
o ¥ [4 -
e Comparisons
e == > <
e Setting
o X=Y
e Assumed to take constant time

o exact constant is not important

o Because constant is not important, can do more than
just this list

CS206 7 LecO7

Example

Time required to compute an average

public double allAverage(longl[] data){
double res = 0;
for (int i=0; i<data.length; i++)

{

res = res+datalil;
} How many

return res/data.length; operations? (In
}

public double posAverage(long[] data) { terms of the length

double res = 0; of data)
long pCount = 0;

for (int i=0; i<data.length; i++) {
long datum=datalil;
if (@<datum) {
res = res+datum;
pCount=pCount+1;
¥
}

return res/pCount;

CS206 8 Lec07

Estimate Running Time

* allAverage executes 5N+3 operations

* posAverage executes a total of 9N+3 primitive
operations in the worst case, 5N+3 in the best case.

o Let a be the fastest primitive operation time, b be
the slowest primitive operation time

e Let T(n) denote the worst-case time of
posAverage. Then:
a(5n+3) < T(n) < b(9n+3)

e T(n) is bounded by two functions

e both are linear in terms of »
CS206 9 LecO7

Growth Rate of Running Time

e Changing the hardware/ software
environment

o Affects T(n) by a constant factor, but
o Does not alter the growth rate of T(n)

e The linear growth rate of the running
time T(n) is an intrinsic property of both
algorithms.

CS206 10 Lec07

Comparison of Two Algorithms

insertion sort vs merge sort

50 100 150
number of elements

insertion sort —— merge sort

200

e insertion sort: n?/4
e merge sort: 2nign

e suppose n=108

o insertion sort:
108*108/4 = 2.5*1015

o merge sort:
108*%26*2 = 5.2* 109

o Or merge sort can be
expected to be about 106
times faster

o SO if merge sort takes 10
seconds then insertion
sort takes about 100 days

CS206

11

LecO7

Asymptotic Notation

e Provides a way to simplify analysis

e Allows us to ignore less important
elements

o constant factors
e Focus on the largest growth of n
e Focus on the dominant term

CS206 12 Lec07

How do these functions grow?

e fi(x) =43n%log*n + 12n3logn + 52nlogn
o f,(x) =15n*+ 7nlog>n

e f3(x) =3n+4logsn + 91n?

o f(x)=13.3%"% 4 4n°

CS206 13 Lec07

Big O

e Constant factors are ignored
e Upper bound on time

e Goal is to have an easily understood
summary of algorithm speec

e not implementation speec

CS206 14 Lec07

Sublinear Algorithms

* O(1)
e runtime does not depend on input

e O(lgz2n)
e algorithm constantly halves input

CS206 15 Lec07

Linear Time Algorithms:O(n)

e The algorithm’s running time is at most
a constant factor times the input size

e Process the input in a single pass
spending constant time on each item

o max, min, sum, average, linear search
e Any single loop

CS206 16 Lec07

O(nlogn) time

Frequent running time in cases when
algorithms involve:

e Sorting
e only the “good” algorithms
e e.g. quicksort, merge sort, ...

CS206 17 Lec07

Quadratic Time: O(»n?)

e Nested loops, double loops
e The dosomething algorithm
e Processing all pairs of elements
e The less-good sorting algorithms
e e.g., Insertion sort

CS206 18 Lec07

Slow!!!! Times

e polynomial time: O(n*)
e All subsets of n elements of size k

o exponential time: O(2")
o All subsets of n elements (power set)

o factorial time: O(n!)
e All permutations of n elements

CS206 19 Lec07

Timing

omn? / o)
O(Vn)
g /
= O(log n)
s
O(1)

Data Input (Space)

CS206 20 Lec07

Writing code that runs in O(x) time

public interface SpeedyAlgorithms {

VO 10
V010
VO 10
VO 10
V010

void

ora
orad
ora
ora
orad

ora

erOne(int[] data);
erLogN(int[] data);
erN(int[] data);
erNSquared(int[] data);
erNCubed(int[] data);
erExponential(int[] data);

CS206

21

