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Analysis of Algorithms
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Running Time

e The run time of a program depends on
o efficiency of the algorithm/implementation
o Size of input
o what else?

e The running time typically grows with input
size

e How do you measure running time?
e CPU usage?
e Reliability?
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Timing Code

public class Timer {
private static final int REPS = 10;
private static final int NANOS_SEC = 1000000000;

public double doSomething(int[] data) {
double k = 0;
for (long i = 0; i < data.length; i++) {
for (long j = 0; j < data.length; j++) {
k += Math.sqrt(i x j);
}
¥

return k;

¥

public static void main(String[] args) {

Timer timer = new Timer();

long datal[]l = new long[REPS];

for (int j = 1000; j < 10001; j = j + 1000) {

for (int 1 = 0; i < REPS; i++) {

long start = System.nanoTime();
timer.doSomething(new int[j]);
long finish = System.nanoTime();
datali]l = (finish - start);
System.out.println(String.format("%d %.4f", j, (double) (finish - start) /

NANOS_SEC) ) ;
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Experimental Studies

e Write a program
implementing the
algorithm
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e Run it with different input ] 8
sizes and compositions : :
e Record times and plot
results ©
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Limitation of Experiments

e You have to implement the algorithm

e You have to generate inputs that represent
all cases

e Comparing two algorithms requires exact
same hardware and software
environments

e Even then timing is hard
e multiprocessing
o file i/o
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Theoretical Analysis

e Use a high-level description of algorithm
o pseudo-code

e Running time as a function input size, n
e Ignore other details of the input

e Independent of the hardware/software
environment
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Primitive Operations

e Basic computations
o ¥ [ 4 -
e Comparisons
e == > <
e Setting
o X=Y
e Assumed to take constant time

o exact constant is not important

o Because constant is not important, can do more than
just this list
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Example

Time required to compute an average

public double allAverage(longl[] data){
double res = 0;
for (int i=0; i<data.length; i++)

{

res = res+datalil;
} How many

return res/data.length; operations? (In
}

public double posAverage(long[] data) { terms of the length

double res = 0; of data)
long pCount = 0;

for (int i=0; i<data.length; i++) {
long datum=datalil;
if (@<datum) {
res = res+datum;
pCount=pCount+1;
¥
}

return res/pCount;
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Estimate Running Time

* allAverage executes 5N+3 operations

* posAverage executes a total of 9N+3 primitive
operations in the worst case, 5N+3 in the best case.

o Let a be the fastest primitive operation time, b be
the slowest primitive operation time

e Let T(n) denote the worst-case time of
posAverage. Then:
a(5n+3) < T(n) < b(9n+3)

e T(n) is bounded by two functions

e both are linear in terms of »
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Growth Rate of Running Time

e Changing the hardware/ software
environment

o Affects T(n) by a constant factor, but
o Does not alter the growth rate of T(n)

e The linear growth rate of the running
time T(n) is an intrinsic property of both
algorithms.
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Comparison of Two Algorithms

insertion sort vs merge sort

50 100 150
number of elements

insertion sort —— merge sort

200

e insertion sort: n?/4
e merge sort: 2nign

e suppose n=108

o insertion sort:
108*108/4 = 2.5*1015

o merge sort:
108*%26*2 = 5.2* 109

o Or merge sort can be
expected to be about 106
times faster

o SO if merge sort takes 10
seconds then insertion
sort takes about 100 days
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Asymptotic Notation

e Provides a way to simplify analysis

e Allows us to ignore less important
elements

o constant factors
e Focus on the largest growth of n
e Focus on the dominant term
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How do these functions grow?

e fi(x) =43n%log*n + 12n3logn + 52nlogn
o f,(x) =15n*+ 7nlog>n

e f3(x) =3n+4logsn + 91n?

o f(x)=13.3%"% 4 4n°
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Big O

e Constant factors are ignored
e Upper bound on time

e Goal is to have an easily understood
summary of algorithm speec

e not implementation speec
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Sublinear Algorithms

* O(1)
e runtime does not depend on input

e O(lgz2n)
e algorithm constantly halves input
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Linear Time Algorithms:O(n)

e The algorithm’s running time is at most
a constant factor times the input size

e Process the input in a single pass
spending constant time on each item

o max, min, sum, average, linear search
e Any single loop
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O(nlogn) time

Frequent running time in cases when
algorithms involve:

e Sorting
e only the “good” algorithms
e e.g. quicksort, merge sort, ...
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Quadratic Time: O(»n?)

e Nested loops, double loops
e The dosomething algorithm
e Processing all pairs of elements
e The less-good sorting algorithms
e e.g., Insertion sort
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Slow!!!! Times

e polynomial time: O(n*)
e All subsets of n elements of size k

o exponential time: O(2")
o All subsets of n elements (power set)

o factorial time: O(n!)
e All permutations of n elements
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Timing

omn? / o)
O(Vn)
g /
= O(log n)
s
O(1)

Data Input (Space)
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Writing code that runs in O(x) time

public interface SpeedyAlgorithms {

VO 10
V010
VO 10
VO 10
V010

void

ora
orad
ora
ora
orad

ora

erOne(int[] data);
erLogN(int[] data);
erN(int[] data);
erNSquared(int[] data);
erNCubed(int[] data);
erExponential(int[] data);
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