
cs151

Linked Lists

1

cs151

Linked List

• A linked list is a lists of objects.

• The objects form a linear sequence.

• The sequence is unbounded in length.

• Each object leads to the next

2

A B C D

∅

head tail

cs151

Linked List, Array and ArrayList
• An array is a single consecutive piece of

memory, a linked list is made of many disjoint
pieces (the linked objects).

• ArrayList is between(ish)

3

Array
Linked List

ArrayList

A
B

C
D

E

Picture
correct for
primitive
types

cs151

Linked List versus Array

• Array
▫ quick access to any element
▫ slow insertion, deletion and reordering

(shifting required in general)

• Linked list
▫ quick insertion, deletion and reordering of

the elements
▫ slow access (must traverse list)

4

cs151

Linked List Core

• the essential part of a linked list is a “self-
referential” structure.

• That is, a class with an instance variable that holds
a “reference” to another member of that same class

• For linked lists, this structure is usually called a
Node

5

private class Node<J> {
 public J data;
 public Node<J> next;
 public Node(J data, Node<J> nx) {
 this.data = data;
 this.next = nx;
 }}

cs151

References in Java (Review)

• A reference variable holds a memory address to
where the referenced object is stored (not the
object itself)

• Reference types
▫ Anything that inherits from Object (including
String, Integer, Double, etc)

▫ convention — initial capital letter
▫ “primitive” types: int, float, etc are NOT reference

types (value variables)

• A reference is null when it doesn’t refer/point
to any object

6

cs151

References and equality (review)

7

public class ReferenceCheck {
 public static void main(String[] args) {
 String s1 = new String("abc");
 String s2 = new String("abc");
 String s3 = s2;
 String s4 = “abc";
 String s5 = “abc”;

 System.out.println(“s1.equals(s2) " + s1.equals(s2));
 System.out.println("s1==s2 " + (s1 == s2));
 System.out.println("s1==s3 " + (s1 == s3));
 System.out.println("s1==s4 " + (s1 == s4));
 System.out.println("s2==s3 " + (s2 == s3));
 System.out.println("s2==s3 " + (s2 == s4));
 System.out.println("s3==s4 " + (s3 == s4));
 }
}

equals should compare content!
default equals compares location

compareTo should compare content!

== compares memory location

The “new” operator returns
a reference to an object of the
given type

cs151

Heads and Tails
• Given that one thing leads to another in a LL, need a place to start

• referred to as “head”
• If you know where the head is, you can get to everything in LL

• So, when working with LL there is almost always a value called
head (or front, or …)

• Often it is useful to also have a value tail
• not required, just really useful

• Q: How do you know when at end of LL?

8
A B C D

∅

head
tail

cs151

Linked List interface

9

public interface LinkedListInterface<J>
{
 int size();
 boolean isEmpty();
 J first();
 J last();
 void addLast(J c);
 void addFirst(J c);
 J removeFirst();
 J removeLast();
 boolean remove(J r);
}

No mention of nodes — they are not public!!
But this still egregiously violates encapsulation (why?)!!

cs151

Starting Point
an Abstract Class

public abstract class AbstractLinkedList<J>
{
 protected class Node<H>
 {
 public H data;
 public Node<H> next;
 public Node(H data)
 {
 this.data = data;
 this.next = null;
 }
 }

 protected Node<J> head = null;

Why doesn’t this
class implement
LinkedListInterface?

Or, why have both
abstract class and
interface?

cs151

isEmpty() and first()

cs151

Size — in AbstractLinkedList

 public int size() {
 int siz=0;
 Node<J> n = head;
 while (n!=null) {
 siz++;
 n= n.next;
 }
 return siz;
 }

• Algorithmic Complexity (Big-O)?
• Can we improve? (yes, but you have to cheat)

cs151

toString() for Linked List
again in AbstractLinkedList

13

 public String toString() {
 StringBuffer sb = new StringBuffer();
 for (Node<J> node = head; node != null; node = node.next) {
 sb.append(node.data.toString());
 sb.append("\n");
 }
 return sb.toString();
 }

cs151

public J last()
• Write in groups

14
Show my last with private utility function

cs151

Inserting at the Tail
1. Get to the end

1. O(n)
2. Save time, add

an instance
variable “tail”

2. Create a new node
3. Have new node point

to null
4. have old last node

point to new node
5. update tail to point

to new node

15

R1

R1R1

R7R1R1

R7

R7R1

R2

R2

cs151

Inserting at the Head

1. create a
new node

2. have new
node point
to old head

3. update
head to
point to
new node

16

R15R13R42

R73R15R13

R73R15R13

R73

R42

write addFirst at chalkboard

cs151

Removing at the Head

1. update
head to
point to
next node in
the list

2. allow
“garbage
collector” to
reclaim the
former first
node

17

R2R4R74

R2

R2R4R74

R4R74R42

R42

cs151

void addLast(J c);
void addFirst(J c);

18

 private Node<J> lastNode() {
 Node<J> n = head;
 if (n == null)
 return null;
 while (n.next != null) {
 n = n.next;
 }
 return n;
 }

 public void addLast(J c) {
 Node<J> n = lastNode();
 Node<J> newnode = new Node<>(c);
 if (n == null) {
 head = newnode;
 return;
 }
 n.next = newnode;
 }

public void addFirst(J c) {

}

cs151

Deletion

19

 public J removeFirst() {
 if (head == null)
 return;
 Node<J> tmp = head;
 head = head.next;
 return tmp.data;
 }

cs151

removeLast()

20

• Problem
• How do you remove the last
• Can we use the lastNode utility function?

• Not exactly, because to remove D we need to do things
to C

• Cannot go backwards!!
• So, need to search forward in list to find the node before the last

node

A B C D

∅

head

cs151

Remove Last

• To find the
node before
last use two
vars: prev and
here

• each time in
loop
• prev=here
• here=here.

next
21

public J removeLast() {
 if (head == null)
 return null;
 Node<J> prev = head;
 Node<J> here = head.next;
 if (here == null) {
 // only one item in list
 head = null;
 return prev.data;
 }
 while (here.next != null) {
 prev = here;
 here = here.next;
 }
 prev.next = null;
 return here.data;
 }

