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Linked List

• A linked list is a lists of objects. 

• The objects form a linear sequence. 

• The sequence is unbounded in length. 

• Each object leads to the next
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Linked List, Array and ArrayList
• An array is a single consecutive piece of 

memory, a linked list is made of many disjoint 
pieces (the linked objects).  

• ArrayList is between(ish)
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Linked List versus Array

• Array 
▫ quick access to any element 
▫ slow insertion, deletion and reordering 

(shifting required in general) 

• Linked list  
▫ quick insertion, deletion and reordering of 

the elements 
▫ slow access (must traverse list)
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Linked List Core

• the essential part of a linked list is a “self-
referential” structure. 

• That is, a class with an instance variable that holds 
a “reference” to another member of that same class 

• For linked lists, this structure is usually called a 
Node
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private class Node<J> { 
  public J data; 
  public Node<J> next; 
  public Node(J data, Node<J> nx) { 
    this.data = data; 
    this.next = nx; 
  }}
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References in Java (Review)

• A reference variable holds a memory address to 
where the referenced object is stored (not the 
object itself) 

• Reference types 
▫ Anything that inherits from Object (including 
String, Integer, Double, etc) 

▫ convention — initial capital letter 
▫ “primitive” types: int, float, etc are NOT reference 

types  (value variables) 

• A reference is null when it doesn’t refer/point 
to any object 
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References and equality (review)
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public class ReferenceCheck { 
    public static void main(String[] args) { 
        String s1 = new String("abc"); 
        String s2 = new String("abc"); 
        String s3 = s2; 
        String s4 = “abc"; 
        String s5 = “abc”; 

        System.out.println(“s1.equals(s2) " + s1.equals(s2)); 
        System.out.println("s1==s2 " + (s1 == s2)); 
        System.out.println("s1==s3 " + (s1 == s3)); 
        System.out.println("s1==s4 " + (s1 == s4)); 
        System.out.println("s2==s3 " + (s2 == s3)); 
        System.out.println("s2==s3 " + (s2 == s4)); 
        System.out.println("s3==s4 " + (s3 == s4)); 
    } 
} 

equals should compare content! 
default equals compares location 

compareTo should compare content!

== compares memory location

The “new” operator returns 
a reference to an object of the 
given type
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Heads and Tails
• Given that one thing leads to another in a LL, need a place to start 

• referred to as “head” 
• If you know where the head is, you can get to everything in LL 

• So, when working with LL there is almost always a value called 
head (or front, or …) 

• Often it is useful to also have a value tail 
• not required, just really useful 

• Q: How do you know when at end of LL?
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Linked List interface
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public interface LinkedListInterface<J> 
{ 
    int size(); 
    boolean isEmpty(); 
    J first(); 
    J last(); 
    void addLast(J c); 
    void addFirst(J c); 
    J removeFirst(); 
    J removeLast(); 
    boolean remove(J r); 
} 

No mention of nodes — they are not public!! 
But this still egregiously violates encapsulation  (why?)!!
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Starting Point 
an Abstract Class

public abstract class AbstractLinkedList<J> 
{ 
    protected class Node<H>  
    { 
        public H data; 
        public Node<H> next; 
        public Node(H data)  
        { 
           this.data = data; 
           this.next = null; 
        }    
    }    

    protected Node<J> head = null; 

Why doesn’t this 
class implement 
LinkedListInterface? 

Or, why have both 
abstract class and 
interface?
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isEmpty() and first()
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Size — in AbstractLinkedList

    public int size() { 
        int siz=0; 
        Node<J> n = head; 
        while (n!=null)  { 
            siz++; 
            n= n.next; 
        } 
    return siz; 
    }

• Algorithmic Complexity (Big-O)? 
• Can we improve?  (yes, but you have to cheat)
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toString() for Linked List 
again in AbstractLinkedList
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    public String toString() { 
        StringBuffer sb = new StringBuffer(); 
        for (Node<J> node = head; node != null; node = node.next) { 
            sb.append(node.data.toString()); 
            sb.append("\n"); 
        } 
        return sb.toString(); 
    }
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public J last()
• Write in groups
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Show my last with private utility function
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Inserting at the Tail
1. Get to the end 

1. O(n) 
2. Save time, add 

an instance 
variable “tail” 

2. Create a new node 
3. Have new node point 

to null 
4. have old last node 

point to new node 
5. update tail to point 

to new node
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Inserting at the Head

1. create a 
new node 

2. have new 
node point 
to old head 

3. update 
head to 
point to 
new node
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Removing at the Head

1. update 
head to 
point to 
next node in 
the list 

2. allow 
“garbage 
collector” to 
reclaim the 
former first 
node
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void addLast(J c);  
void addFirst(J c);    
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    private Node<J> lastNode() { 
        Node<J> n = head; 
        if (n == null) 
            return null; 
        while (n.next != null) { 
            n = n.next; 
        } 
        return n; 
    } 

    public void addLast(J c) { 
        Node<J> n = lastNode(); 
        Node<J> newnode = new Node<>(c); 
        if (n == null) { 
            head = newnode; 
            return; 
        } 
        n.next = newnode; 
    } 

public void addFirst(J c) {

}
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Deletion
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    public J removeFirst() { 
        if (head == null) 
            return; 
        Node<J> tmp = head; 
        head = head.next; 
        return tmp.data; 
    } 
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removeLast()
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• Problem 
• How do you remove the last 
• Can we use the lastNode utility function? 

• Not exactly, because to remove D we need to do things 
to C 

• Cannot go backwards!! 
• So, need to search forward in list to find the node before the last 

node
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Remove Last

• To find the 
node before 
last use two 
vars: prev and 
here 

• each time in 
loop 
• prev=here 
• here=here.

next
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public J removeLast() { 
        if (head == null) 
            return null; 
        Node<J> prev = head; 
        Node<J> here = head.next; 
        if (here == null) { 
            // only one item in list 
            head = null; 
            return prev.data; 
        } 
        while (here.next != null) { 
            prev = here; 
            here = here.next; 
        } 
        prev.next = null; 
        return here.data; 
    } 


