
CS151 Lec01

Intro to Data Structures

CS151

Fall 2022

1

CS151

Course Goals

2

1.Become a better computer scientist

2.Learn about common data structures

1. Implementation

2. How and when to use each

3.Understand Object Oriented program design
and its implementation in Java

4.Become a better Java programmer

5.Develop an understanding of UNIX / working

at the command line

CS151 Lec01

Things to Know
• Course website

▫ cs.brynmawr.edu/cs151

▫ usually updated before and after each class

▫ lecture notes and code sample will be

posted before class

▫ updates after class with revisions, etc

▫ Syllabus

▫ cs.brynmawr.edu/cs151/syllabus2.html

▫ usually updated on weekend for next week’s

material

3

https://cs.brynmawr.edu/cs151
https://cs.brynmawr.edu/cs151/syllabus2.html

CS151 Lec01

More Things to Know

• CS account

▫ You should have gotten email from

ddiaz1@brynmawr.edu

• Lab:

• Park 231

• Th 11:25 - 12:45

• Lab work may be done in groups!

• I encourage you to do so.

• Software: Java, Visual Studio Code, Unix

4

There will be a
lab this week!!

CS151

Yet More

• Homeworks

• Approximately weekly

• Almost always due Wednesday before

midnight

• Almost always assigned on Thursday

• TAs in Park 231

• Sun--Thu: 7-10

• posted and updated on the class web

site.
5

There will be an
assignment this
week

CS151

Textbook

6

CS151

Data Structure?

• Wikipedia: a data structure is
a data organization, management, and
storage format that enables efficient access
and modification

• We will talk about approximately 8 data
structures

• How to use

• Why to choose this one

• How to implement

7

CS151

Data Structures

• Array

• ArrayList

• it grows and shrinks

• Maps / Hashtables

• going beyond numeric indexes

• Stacks and Queues

• Linked Lists

• Trees

• Graphs

8

CS151

Programming techniques and concepts

• Object oriented programming

• inheritance, generics, …

• Asymptotic Analysis

• Recursion

• Searching

• Sorting

9

CS151

Java

• “Object Oriented” Language

• Data Types

• Base

• fixed set

• Initial lower case letter (e.g. int)

• Objects (Classes)

• User extensible

• Initial capital letter (by convention)

10

CS151

Base/Primitive Types

• Primitive types precisely define the way
memory used to store the data

11

Extant definitions of primitives

subject to change

CS151

Testing max Integer

12

public class BoundTest {

 public static void main(String[] args) {

 System.out.println("MAX:" + Integer.MAX_VALUE + " MIN:" +
Integer.MIN_VALUE);

 BoundTest bt = new BoundTest();

 bt.testInt(1);

 }

 public void testInt(int startingValue) {

 int intV = startingValue;

 for (int jj = 1; jj < 100 && intV > 0; jj++) {

 intV *= 2;

 System.out.println("Pow " + jj + " " + intV);

 }

 for (int jj = 0; jj < 10; jj++) {

 System.out.println("minus " + jj + " " + (intV - jj));

 }

 }

}

CS151

How integers are stored

• Everything is bits

• 0 or 1

• the int type uses 32 bits
with number in base 2

• To show +/- the leftmost
bit

• “sign bit”

• 0—positive

• 1—negative

• “two’s complement”

13

base 10 in bits
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
-8 1000
-7 1001

Suppose you have 4 bits

for a number

CS151 Lec01

Classes and Variables
• A class is a description of what an object stores (its

data) and how it functions

▫ instance variables

▫ methods

▫ Every variable is either a base type or a reference to
an object

• Every object is an instance of a class

• Object names — Convention: initial capital

• instances — Convention: initial lower case

• camel case thereafter, camelCaseThereAfter

14

CS151 Lec01

Creating and Using Objects

• In Java, a new object is created by using the new
operator followed by a call to a constructor for
the desired class.

• A constructor is a special method that shares the
same name of its class. The new operator returns
a reference to the newly created instance.

• every method other than a construction must

give the type of information it returns

• Almost everything in Java is a class

• More properly, almost all variables in Java
store references to instances of a class

15

CS151

/**

 * A simple class from a simple song

 * Created: Sep 2020

 * Modified: Jan 2022

 * @author gtowell

 */

public class Inchworm

{

 //instance variable comment

 private int measurement;

 /**

 * Create an inchworm starting the given value

 * @param startingMeasurement the starting measurement

 */

 public Inchworm(int measurement) {

 this.measurement = measurement;

 }

Lec01

Defining Objects

CS151

 /**

 * Create an inchworm with a default starting position (1).

 */

 public Inchworm() {

 this(1);

 }

 /**

 * The constructor copies the state of an existing inchworm

 * @param iw the inchworm to be copied

 */

 public Inchworm(Inchworm iw) {

 this.measurement = iw.getMeasurement();

 }

 /**

 * Get accessor for measurement.

 * Get accessors need NOT be commented

 * @return the measurement

 */

 public int getMeasurement() {

 return this.measurement;

 }

Class Part2

17

Always use
accessors. No
public instance
variables

CS151

 /**

 * Change the measurement by doubling. It is all inchworms can do.

 */

 public void doubleMeasure() {

 this.measurement *= 2;

 }

 /**

 * The toString function. Normally this does not need a comment.

 * @Override indicates that function is defined in ancestor

 */

 @Override

 public String toString() {

 return "The marigold measures " + this.measurement + " inches";

 }

 /**

 * Put the inchworm back in its base state

 */

 public void reset() {

 this.measurement=1;

 }

Class Part3

18

CS151

Class Part4

19

/**

 * Function to be executed at start.

 * @param args NOT used.

 */

 public static void main(String[] args) {

 Inchworm inchworm = new Inchworm();

 inchworm.doubleM();

 System.out.println(inchworm);

 Inchworm inchworm2 = new Inchworm(inchworm);

 inchworm2.doubleM();

 System.out.println(inchworm2 + " " + inchworm);

 }

CS151 Lec01

Access Control Modifiers

• public — all classes may access

• private — access only within that class.

• protected — access only from descendents

• “” (aka package) — access only by classes within the

package

• (I hate significant whitespace)

• The package is generally the code you are working
on.

• packages are useful in large development projects
(>10 people)

• DO NOT use in this course
20

CS151

Static
• When a variable or method of a class is declared

as static, it is associated with the class as a
whole, rather than with each individual instance
of that class.

• Only acceptable use (at least for this course):

• In methods …

• public static void main(String[]
args)

• In variables .. to declare constants

• public static final double
GOLDEN_MEAN =1.61803398875;

21

CS151 Lec01

Casting (of base types)

• Assignment
REQUIRES type
equality

• Use casting to
change type

• Must explicitly cast if
there is a possible
loss of precision

• see Casting.java

private void trial()

 {

 int x = 5;

 double y = 1.2;

 y = x;

 x = y;

 y = (double) x;

 x = (int) y;

 }

22

CS151 Lec01

.equals: Object Equality

• Do not use ==

• Use == only
when
comparing base
types

• Review your
strings and
String class
methods

23

public class StringEqual {

 public static void main(String[] args) {

 String str1 = new String("one");

 String str2 = new String("one");

 System.out.println("str1==str2: "

+ str1 == str2);

 System.out.println("str1==str2: "

+ (str1 == str2));

 System.out.println("str1.equals(str2): "

+ str1.equals(str2));

 }

}

CS151 Lec01

What you should know/review

• variables

• operators

• methods

▫ parameters

▫ return value

• conditionals

• for/while loops

• class design and
object construction

▫ instance variables

▫ constructor

▫ getters/setters

▫ class methods

▫ new

• arrays

• arrays of objects

• String

24

