
cs151

Trees

1

mostly chapter 26

cs151

Tree

• A tree is an abstract
model of a
hierarchical structure

• Nodes have a parent-
child  
relation

• No loops

• One Path

2

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

cs151

Terminology

Same as for heaps

• root: no parent – A

• There is only one

root

• external node/leaf: no

children – E, I, J, K, G, H, D

• internal node: node with

at least one child - A, B, C, F

• ancestor/descendent

• depth - # of ancestors

• height - max depth

• Subtree: tree
consisting of a node
and its descendants

3

A

B DC

G HE F

I J K

cs151

Binary Tree
• An tree with every node having at most

two children – left and right

4

cs151

Binary Tree Properties

• Let denote the number of nodes and
the height of a binary tree

▫

▫

• Height of a binary tree  
is usually (you hope) 
~O(n lg(n)) of the max  
number of nodes

• worst case ??

𝑛 h

h + 1 ≤ 𝑛 ≤ 2h+1 − 1
log(𝑛 + 1) − 1 ≤ h ≤ 𝑛 − 1

5

...

0

... ...

1

2

3

1

...

2

4

8

Level Nodes

cs151

Type of Binary Trees

• A binary tree is complete if every level
(except possibly the last) is filled

• A complete binary tree has height =
log2(n)

• Heaps are always complete!

6

cs151

Interface

7

public interface TreeInterface

{

 int size();

 int height();

 boolean isEmpty();

 boolean contains(B element);

 void insert(B element);

 B remove(B element);

}

SearchTreeInterface
in book

cs151

Class

8

public class LinkedBinaryTree<E extends Comparable<E>>
implements TreeInterface<E> {

 protected Node . . .

 protected int size;

 protected Node<E> root;

cs151

Implementation

9

protected class Node<F extends Comparable<F>> {

 F payload;

 Node<F> right;

 Node<F> left;

 public Node(F e) {

 payload = e;

 right = null;

 left = null;

 }

 public String toString() {

 return payload.toString();

 }

 }
 This looks a lot like a doubly linked list!!

So, is a doubly linked list a tree?

payload

essentially same

as BinaryNode

in book

cs151

Binary Search Trees

• smaller to the left, bigger to the right

10
Always follow this pattern for insertion ... why?

cs151

size() without size

11

• Size (number of nodes) of tree is

• size of right subtree plus

• size of left subtree plus

• 1

 public int size() {

 return sizeAltUtil(root);

 }

 private int sizeAltUtil(Node<E> treepart) {

 if (treepart == null)

 return 0;

 return sizeAltUtil(treepart.right) +

 sizeAltUtil(treepart.left) +

 1;

 }

Its recursive!!!

CS206

Height / maxDepth

12

Again, using a recursive helper method

 @Override

 public int height()

 {

	 return maxDepthUtil(root, 0);

 }

 int maxDepthUtil(Node n, int depth) {

 …}

live write

cs151

contains

• returns true if found in the tree, false
otherwise

• Assumes / requires Binary search tree

13

cs151

Contains Algorithm

• compare with root of current subtree

▫ root is empty – return false

▫ root == element – return true

▫ root < element – recurse on right child

▫ root > element - recurse on left child

▫ Comparisons are assumed to be done using
Comparable interface (ie, the compareTo method)

▫ <E extends Comparable<E>>

14

cs151

Pseudo Code

findRec(node, toBeFound):  
 if node == null:  
 return false  
 if node.payload == toBeFound:  
 return true  
 if node.payload > toBeFound:  
 return findRec(node.left, toBeFound)  
 else  
 return findRec(node.right, toBeFound)
  

15

cs151

Contains Code
• Write using a recursive helper method

16

public boolean contains(E element) {

	 if (root==null) return false;

	 return containsUtil(root, element)!=null;

 }

private Node containsUtil(Node node, E toBeFound) {

 … }

live write

cs151

Unordered Contains

• Suppose that you did not know relation
among children (you do NOT have a binary
search tree)

• So thing being looked for could be either
left or right

• How would you change containsUtil
function

• Would a tree be a useful structure in
this case?

17

cs151

insert
• void insert(E element);

• new node is always inserted as a leaf

• inserts to

▫ left subtree if element is smaller than subtree root

▫ right subtree if larger

▫ Pre-case: if root=null then root=new Node

▫ Handling Duplicates: Several possibilities: “Just say No”, add in right subtree, do

something in Node

18

public void insert(E element) {

 if (root==null) {

 root=new Node<E>(element);

 size = 1;

 } else

 insertUtil(root, element);

 }

cs151 Lec13

Groups

19

 private void insertUtil(Node treepart, E toBeAdded) {

 … }

• Draw binary search trees for data received from left to
righto

• 4, 5, 6, 49, 43, 31, 19, 10, 11, 8, 17

• 17, 31, 8, 19, 43, 11, 5, 49, 10, 6, 4

• Write insertUtil

cs151

Traversals / Printing

20

cs151

Postorder traversal

21

 public void printPostOrder() {

 iPrintPostOrder(root, 0);

 System.out.println();

 }

 private void iPrintPostOrder(Node treePart, int depth) {

 if (treePart==null) return;

 iPrintPostOrder(treePart.left, depth+1);

 iPrintPostOrder(treePart.right, depth+1);

 System.out.print("["+treePart.payload+","+depth+"]");

 }

cs151

Remove

• boolean remove(E element);

• returns true if element existed and was
removed and false otherwise

• Cases

▫ element not in tree

▫ element is a leaf

▫ element has one child

▫ element has two children

22

cs151

Leaf

23

• Just delete

cs151

One child

• Replace with child – skip over like in linked
list

24

cs151

Two Children

25

• Replace with in-order predecessor or in-
order successor

• in-order predecessor

▫ rightmost child in left subtree

▫ max-value child in left subtree

• in-order successor

▫ leftmost child in right subtree

▫ min-value child in right subtree

cs151

Replace with Predecessor

26

cs151

Replace with Successor

27

cs151

Practice

• Given the data:

• 6, 19, 10, 5, 43, 31, 11, 8, 4, 17, 49, 36

• Draw the binary tree

• Write the preorder traversal of your tree

• Write the postorder traversal of your tree

• What the height of the tree?

• If the data were re-arranged, what is the

shortest possible tree?
28

