Lists, Stacks and Queues

Stacks and Queues

Stacks

A restricted list where insertions and
deletions can only be performed at one
location, the end of the list (top).

LIFO — Last In First Out

o Laundry Basket — last thing you put in is the first
thing you remove

o Plates — remove from the top of the stack and add
to the top of the stack

‘ Stack ADT

= Basic operations are Stack Model
push, pop, and top

pop push top

Stack

top

Adapting Lists to Implement Stacks

Adapter Design Pattern

Allow a client to use a class whose interface
is different from the one expected by the
client

Do not modify client or class, write adapter
class that sits between them

In this case, the List is an adapter for the
Stack. The client (user) calls methods of the
Stack which in turn calls appropriate List
method(s).

Adapter Model for Stack

Client (Stack user)

I theStack.push(10)
Stack (adapter)

I theList.add(0, 10) ;

List (adaptee)

Queues

Restricted List
o only add to head
o only remove from tall

Examples
o line waiting for service
o Jobs waiting to print

Implement as an adapter of List

Queue ADT

Basic Operations are enqueue and dequeue

dequeue

B Queue enqueue

Adapter Model for Queue

Client (Queue user)
1 theQ.enqueue(10)

Quecue (adapter)
1 theList.add(theList.size() -1, 10)

List (adaptee)

Circular Queue

Adapter pattern may be impractical
. Overhead for creating, deleting nodes
. Max size of queue is often known

A circular queue is a fixed size array
. Slots in array reused after elements dequeued

Circular Queue Data

A fixed size array

Control Variables

o arraySize

o the fixed size (capacity) of the array

o currentSize

o the current number of items in the queue

Q Initialized to 0

o front

o the array index from which the next item will be dequeued.
Q Initialized to 0

o back

o the array index last item that was enqueued
Q Initialized to -1

10

Circular Queue Psuedocode

void enqueue(Object x) {
1f currentSize == arraySize, throw exception
is full
back = (back + 1) % arraySize;
array|[back] = x;
++currentSize;
}
Object dequeue() {
1f currentSize == 0, throw exception
is empty

—-—currentSize;

Object x = array[front];

front = (front + 1) % arraySize

return Xx;

// Q

// Q

11

Circular Queue Example

0 1 2 3
4 5
Trace the contents of the array and the values of currentSize, front and
back after each of the following operations.

1. enqueue(12) 7. enqueue(42)
2. enqueue(17) 8. dequeue()

3. enqueue(43) 9. enqueue(33)
4. enqueue(62) 10. enqueue(18)
5. dequeue() 11. enqueue(99)
6. dequeue()

