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CMSC 206 
 

Introduction to Trees 
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Tree ADT 

n  Tree definition 
q  A tree is a set of nodes which may be empty 
q  If not empty, then there is a distinguished node r, 

called root and zero or more non-empty subtrees 
T1, T2,  … Tk, each of whose roots are connected 
by a directed edge from r.  

n  This recursive definition leads to recursive 
tree algorithms and tree properties being 
proved by induction. 

n  Every node in a tree is the root of a subtree. 
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A Generic Tree 
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Tree Terminology 

q  Root of a subtree is a child of r. r is the parent. 
q  All children of a given node are called siblings. 
q  A leaf (or external node) has no children. 
q  An internal node is a node with one or more 

children 
q  A path from node V1 to node Vk is a sequence of 

nodes s.t. Vi is the parent of Vi+1 for 1 ≤ i ≤ k. 
q  If there is a path from V1 to V2, then V1 is an ancestor of 

V2 and V2 is a descendent of V1. 
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More Tree Terminology 

n  The length of this path is the number of edges.   
n  The length of the path is one less than the number of 

nodes on the path ( k – 1 in this example) 
n  The depth (also called level) of any node in a tree is 

the length of the path from root to the node. 
n  The height of a tree is the length of the path from the 

root to the deepest node in the tree.  
n  A tree with only one node (the root) has height 0. 
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A Unix directory tree 
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Tree Storage 

n  A tree node contains: 
q  Data Element 
q  Links to other nodes 

n  Any tree can be represented with the “first-
child, next-sibling” implementation. 

 
 

class TreeNode 
{ 
    AnyType    element; 
    TreeNode firstChild; 
    TreeNode nextSibling; 
} 
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Printing a Child/Sibling Tree 

  // depth equals the number of tabs to indent name  

 private void listAll( int depth ) 

  { 

            printName( depth ); // Print the name of the object 

            if( isDirectory( ) ) 

                  for each file c in this directory 

       (i.e. for each child) 

                         c.listAll( depth + 1 ); 

  } 

  public void listAll( ) 

  { 

           listAll( 0 ); 

  } 

n  What is the output when listAll( ) is used for 
the Unix directory tree? 
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K-ary Tree 

n  If we know the maximum number of children 
each node will have, K, we can use an array 
of children references in each node. 
 class KTreeNode 

 { 

  AnyType element; 

  KTreeNode children[ K ]; 

 } 
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Pseudocode for Printing a K-ary Tree 

  // depth equals the number of tabs to indent name  
 private void listAll( int depth ) 

  { 
     printElement( depth ); // Print the object 
       if( children != null ) 
          for each child c in children array 
              c.listAll( depth + 1 ); 
  } 
 
  public void listAll( ) 
  { 
      listAll( 0 ); 
  } 
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Binary Trees 

n  A special case of K-ary tree is a tree whose nodes 
have exactly two child references -- binary trees. 

 
n  A binary tree is a rooted tree in which no node can 

have more than two children AND the children are 
distinguished as left and right.  
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The Binary Node Class 
  private class BinaryNode<AnyType> 
 { 

    // Constructors 
     BinaryNode( AnyType theElement ) 
     {  
    this( theElement, null, null );  
   } 

 
     BinaryNode( AnyType theElement, 
    BinaryNode<AnyType> lt, BinaryNode<AnyType> rt ) 

       {  
    element  = theElement; left = lt; right = rt;  
   } 

 
       AnyType element;            // The data in the node 
       BinaryNode<AnyType> left;   // Left child reference 
       BinaryNode<AnyType> right;  // Right child reference 
    } 
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Full Binary Tree 

A full binary tree is a binary tree in which every 
node is a leaf or has exactly two children. 
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FBT Theorem 
n  Theorem: A FBT with n internal nodes has  

n + 1 leaves (external nodes). 
n  Proof by strong induction on the number of 

internal nodes, n: 
n  Base case: 

q  Binary Tree of one node (the root) has: 
n  zero internal nodes 
n  one external node (the root) 

n  Inductive Assumption: 
q  Assume all FBTs with n internal nodes have n + 

1 external nodes.   
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FBT Proof (cont’d) 
 
n  Inductive Step - prove true for a tree with n + 1 internal 

nodes (i.e. a tree with n + 1 internal nodes has  
(n + 1) + 1 = n + 2 leaves) 
q  Let T be a FBT of n internal nodes.  
q  Therefore T has n + 1 leaf nodes. (Inductive Assumption)  
q  Enlarge T so it has n+1 internal nodes by adding two nodes to 

some leaf.  These new nodes are therefore leaf nodes. 
q  Number of leaf nodes increases by 2, but the former leaf 

becomes internal. 
q  So,  

n  # internal nodes becomes n + 1,  
n  # leaves becomes (n + 1) + 2 - 1 = n + 2 
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Perfect Binary Tree 

n  A Perfect Binary Tree is a Full Binary Tree in 
which all leaves have the same depth. 
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PBT Theorem 
n  Theorem: The number of nodes in a PBT is 2h

+1-1, where h is height. 
n  Proof by strong induction on h, the height of the 

PBT: 
q  Notice that the number of nodes at each level is 2l.  

(Proof of this is a simple induction - left to student as 
exercise).  Recall that the height of the root is 0.   

q  Base Case: 
The tree has one node; then h  = 0 and n = 1  
and 2(h + 1) - 1 = 2(0 + 1) – 1 = 21 –1 = 2 – 1 = 1 = n. 

q  Inductive Assumption: 
Assume true for all PBTs with height h ≤ H.   
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Proof of PBT Theorem(cont) 
n  Prove true for PBT with height H+1: 

q  Consider a PBT with height H + 1. It consists of 
a root and two subtrees of height <= H. Since 
the theorem is true for the subtrees (by the 
inductive assumption since they have  
height ≤ H)  the PBT with height H+1 has 

q     (2(H+1) - 1)  nodes for the left subtree 
 + (2(H+1) - 1) nodes for the right subtree 
 + 1   node for the root 

q  Thus,  n = 2 * (2(H+1) – 1) + 1 
  = 2((H+1)+1) - 2 + 1 = 2((H+1)+1) - 1 
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Complete Binary Tree 

A Complete Binary Tree is a binary tree in 
which every level is completed filled, except 
possibly the bottom level which is filled from 
left to right. 
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Tree Traversals 

Depth-First Traversals 
n  Preorder – root, left subtree, right subtree 
n  Inorder – left subtree, root, right subtree 
n  Postorder – left subtree, right subtree, root 

Breadth-First Traversal 
n  Level-order – each level is printed in turn 



Tree Traversals 
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Depth-first 
Preorder: F, B, A, D, C, E, G, I, H (root, left, right) 
Inorder: A, B, C, D, E, F, G, H, I (left, root, right) ß Notice the sorting! 
Postorder: A, C, E, D, B, H, I, G, F (left, right, root) 
Breadth-first 
Level-order: F, B, G, A, D, I, C, E, H 
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Constructing Trees 

n  Is it possible to reconstruct a Binary Tree 
from just one of its pre-order, inorder, or post-
order sequences? 
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Constructing Trees (cont) 

n  Given two sequences (say pre-order and 
inorder) is the tree unique? 
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Finding an element in a Binary Tree? 
n    Return a reference to node containing x, return null if x is not found 
 

public BinaryNode<AnyType> find(AnyType x) 
{ 
    return find(root, x); 
} 
private BinaryNode<AnyType> find( BinaryNode<AnyType> node, AnyType x) 
{ 

 BinaryNode<AnyType> t = null;    // in case we don’t find it 
 if ( node.element.equals(x) )   // found it here??   
  return node;   

  
 // not here, look in the left subtree 
 if(node.left != null) 
  t = find(node.left,x); 

 
 // if not in the left subtree, look in the right subtree 
 if ( t == null && node.right != null) 
  t = find(node.right,x); 

 
 // return reference, null if not found 
 return t; 

} 
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Binary Trees and Recursion 

n  A Binary Tree can have many properties 
q  Number of leaves 
q  Number of interior nodes 
q  Is it a full binary tree? 
q  Is it a perfect binary tree? 
q  Height of the tree 

n  Each of these properties can be determined 
using a recursive function. 
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Recursive Binary Tree Function 

return-type function (BinaryNode<AnyType> t) 
{ 
    // base case – usually empty tree 

if (t == null) return xxxx; 
 
 // determine if the node referred to by t has the property 

 
 // traverse down the tree by recursively “asking” left/right  
// children if their subtree has the property 

 
 return theResult; 

} 
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Is this a full binary tree? 

boolean  isFBT (BinaryNode<AnyType> t) 
{ 

// base case – an empty tee is a FBT 
 if (t == null) return true; 

 
 // determine if this node is “full” 
// if just one child, return – the tree is not full 

 if ((t.left == null && t.right != null) 
 ||  (t.right == null && t.left != null)) 

 return false; 
 
 // if this node is full, “ask” its subtrees if they are full 
// if both are FBTs, then the entire tree is an FBT 
// if either of the subtrees is not FBT, then the tree is not 

 return isFBT( t.right ) && isFBT( t.left ); 
 
} 
 



28 

Other Recursive Binary Tree Functions 

n  Count number of interior nodes 
 int countInteriorNodes( BinaryNode<AnyType> t); 
 

n  Determine the height of a binary tree.  By 
convention (and for ease of coding) the 
height of an empty tree is -1 
 int height( BinaryNode<AnyType> t); 
 

n  Many others 
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Other Binary Tree Operations 

n  How do we insert a new element into a binary 
tree? 

 
n  How do we remove an element from a binary 

tree? 
 


