
1

CMSC 206

Introduction to Trees

2

Tree ADT

n  Tree definition
q  A tree is a set of nodes which may be empty
q  If not empty, then there is a distinguished node r,

called root and zero or more non-empty subtrees
T1, T2, … Tk, each of whose roots are connected
by a directed edge from r.

n  This recursive definition leads to recursive
tree algorithms and tree properties being
proved by induction.

n  Every node in a tree is the root of a subtree.

3

A Generic Tree

4

Tree Terminology

q  Root of a subtree is a child of r. r is the parent.
q  All children of a given node are called siblings.
q  A leaf (or external node) has no children.
q  An internal node is a node with one or more

children
q  A path from node V1 to node Vk is a sequence of

nodes s.t. Vi is the parent of Vi+1 for 1 ≤ i ≤ k.
q  If there is a path from V1 to V2, then V1 is an ancestor of

V2 and V2 is a descendent of V1.

5

More Tree Terminology

n  The length of this path is the number of edges.
n  The length of the path is one less than the number of

nodes on the path (k – 1 in this example)
n  The depth (also called level) of any node in a tree is

the length of the path from root to the node.
n  The height of a tree is the length of the path from the

root to the deepest node in the tree.
n  A tree with only one node (the root) has height 0.

6

A Unix directory tree

7

Tree Storage

n  A tree node contains:
q  Data Element
q  Links to other nodes

n  Any tree can be represented with the “first-
child, next-sibling” implementation.

class TreeNode
{
 AnyType element;
 TreeNode firstChild;
 TreeNode nextSibling;
}

8

Printing a Child/Sibling Tree

 // depth equals the number of tabs to indent name

 private void listAll(int depth)

 {

 printName(depth); // Print the name of the object

 if(isDirectory())

 for each file c in this directory

 (i.e. for each child)

 c.listAll(depth + 1);

 }

 public void listAll()

 {

 listAll(0);

 }

n  What is the output when listAll() is used for
the Unix directory tree?

9

K-ary Tree

n  If we know the maximum number of children
each node will have, K, we can use an array
of children references in each node.
 class KTreeNode

 {

 AnyType element;

 KTreeNode children[K];

 }

10

Pseudocode for Printing a K-ary Tree

 // depth equals the number of tabs to indent name
 private void listAll(int depth)

 {
 printElement(depth); // Print the object
 if(children != null)
 for each child c in children array
 c.listAll(depth + 1);
 }

 public void listAll()
 {
 listAll(0);
 }

11

Binary Trees

n  A special case of K-ary tree is a tree whose nodes
have exactly two child references -- binary trees.

n  A binary tree is a rooted tree in which no node can

have more than two children AND the children are
distinguished as left and right.

12

The Binary Node Class
 private class BinaryNode<AnyType>
 {

 // Constructors
 BinaryNode(AnyType theElement)
 {
 this(theElement, null, null);
 }

 BinaryNode(AnyType theElement,
 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)

 {
 element = theElement; left = lt; right = rt;
 }

 AnyType element; // The data in the node
 BinaryNode<AnyType> left; // Left child reference
 BinaryNode<AnyType> right; // Right child reference
 }

13

Full Binary Tree

A full binary tree is a binary tree in which every
node is a leaf or has exactly two children.

14

FBT Theorem
n  Theorem: A FBT with n internal nodes has

n + 1 leaves (external nodes).
n  Proof by strong induction on the number of

internal nodes, n:
n  Base case:

q  Binary Tree of one node (the root) has:
n  zero internal nodes
n  one external node (the root)

n  Inductive Assumption:
q  Assume all FBTs with n internal nodes have n +

1 external nodes.

15

FBT Proof (cont’d)

n  Inductive Step - prove true for a tree with n + 1 internal

nodes (i.e. a tree with n + 1 internal nodes has
(n + 1) + 1 = n + 2 leaves)
q  Let T be a FBT of n internal nodes.
q  Therefore T has n + 1 leaf nodes. (Inductive Assumption)
q  Enlarge T so it has n+1 internal nodes by adding two nodes to

some leaf. These new nodes are therefore leaf nodes.
q  Number of leaf nodes increases by 2, but the former leaf

becomes internal.
q  So,

n  # internal nodes becomes n + 1,
n  # leaves becomes (n + 1) + 2 - 1 = n + 2

16

Perfect Binary Tree

n  A Perfect Binary Tree is a Full Binary Tree in
which all leaves have the same depth.

17

PBT Theorem
n  Theorem: The number of nodes in a PBT is 2h

+1-1, where h is height.
n  Proof by strong induction on h, the height of the

PBT:
q  Notice that the number of nodes at each level is 2l.

(Proof of this is a simple induction - left to student as
exercise). Recall that the height of the root is 0.

q  Base Case:
The tree has one node; then h = 0 and n = 1
and 2(h + 1) - 1 = 2(0 + 1) – 1 = 21 –1 = 2 – 1 = 1 = n.

q  Inductive Assumption:
Assume true for all PBTs with height h ≤ H.

18

Proof of PBT Theorem(cont)
n  Prove true for PBT with height H+1:

q  Consider a PBT with height H + 1. It consists of
a root and two subtrees of height <= H. Since
the theorem is true for the subtrees (by the
inductive assumption since they have
height ≤ H) the PBT with height H+1 has

q  (2(H+1) - 1) nodes for the left subtree
 + (2(H+1) - 1) nodes for the right subtree
 + 1 node for the root

q  Thus, n = 2 * (2(H+1) – 1) + 1
 = 2((H+1)+1) - 2 + 1 = 2((H+1)+1) - 1

19

Complete Binary Tree

A Complete Binary Tree is a binary tree in
which every level is completed filled, except
possibly the bottom level which is filled from
left to right.

20

Tree Traversals

Depth-First Traversals
n  Preorder – root, left subtree, right subtree
n  Inorder – left subtree, root, right subtree
n  Postorder – left subtree, right subtree, root

Breadth-First Traversal
n  Level-order – each level is printed in turn

Tree Traversals

21

Depth-first
Preorder: F, B, A, D, C, E, G, I, H (root, left, right)
Inorder: A, B, C, D, E, F, G, H, I (left, root, right) ß Notice the sorting!
Postorder: A, C, E, D, B, H, I, G, F (left, right, root)
Breadth-first
Level-order: F, B, G, A, D, I, C, E, H

22

Constructing Trees

n  Is it possible to reconstruct a Binary Tree
from just one of its pre-order, inorder, or post-
order sequences?

23

Constructing Trees (cont)

n  Given two sequences (say pre-order and
inorder) is the tree unique?

24

Finding an element in a Binary Tree?
n  Return a reference to node containing x, return null if x is not found

public BinaryNode<AnyType> find(AnyType x)
{
 return find(root, x);
}
private BinaryNode<AnyType> find(BinaryNode<AnyType> node, AnyType x)
{

 BinaryNode<AnyType> t = null; // in case we don’t find it
 if (node.element.equals(x)) // found it here??
 return node;

 // not here, look in the left subtree
 if(node.left != null)
 t = find(node.left,x);

 // if not in the left subtree, look in the right subtree
 if (t == null && node.right != null)
 t = find(node.right,x);

 // return reference, null if not found
 return t;

}

25

Binary Trees and Recursion

n  A Binary Tree can have many properties
q  Number of leaves
q  Number of interior nodes
q  Is it a full binary tree?
q  Is it a perfect binary tree?
q  Height of the tree

n  Each of these properties can be determined
using a recursive function.

26

Recursive Binary Tree Function

return-type function (BinaryNode<AnyType> t)
{
 // base case – usually empty tree

if (t == null) return xxxx;

 // determine if the node referred to by t has the property

 // traverse down the tree by recursively “asking” left/right
// children if their subtree has the property

 return theResult;

}

27

Is this a full binary tree?

boolean isFBT (BinaryNode<AnyType> t)
{

// base case – an empty tee is a FBT
 if (t == null) return true;

 // determine if this node is “full”
// if just one child, return – the tree is not full

 if ((t.left == null && t.right != null)
 || (t.right == null && t.left != null))

 return false;

 // if this node is full, “ask” its subtrees if they are full
// if both are FBTs, then the entire tree is an FBT
// if either of the subtrees is not FBT, then the tree is not

 return isFBT(t.right) && isFBT(t.left);

}

28

Other Recursive Binary Tree Functions

n  Count number of interior nodes
 int countInteriorNodes(BinaryNode<AnyType> t);

n  Determine the height of a binary tree. By
convention (and for ease of coding) the
height of an empty tree is -1
 int height(BinaryNode<AnyType> t);

n  Many others

29

Other Binary Tree Operations

n  How do we insert a new element into a binary
tree?

n  How do we remove an element from a binary

tree?

