CMSC 206

Dictionaries and Hashing



The Dictionary ADT

a dictionary (table) is an abstract model of a
database or lookup table

like a priority queue, a dictionary stores key-
element pairs

the main operation supported by a dictionary
IS searching by key



Examples

Telephone directory
Library catalogue

Books in print: key ISBN
FAT (File Allocation Table)



The Dictionary ADT

simple container methods:
0 size()

a ISEmpty()

o iterator()

guery methods:

o get(key)

o getAllElements(key)



The Dictionary ADT

update methods:

o insert(key, element)

o remove(key)

o removeAllElements(key)

special element

a0 NO _SUCH_KEY, returned by an unsuccessful
search



The Basic Problem

We have lots of data to store.

We desire efficient — O( 1 ) — performance for
insertion, deletion and searching.

Too much (wasted) memory is required if we
use an array indexed by the data’ s key.

The solution is a “hash table”.



Hash Table

0O 1 2 m-1

Basic Idea

o The hash table is an array of size ‘'m’

o The storage index for an item determined by a hash
function h(k): U—={0,1, ..., m-1}

Desired Properties of h(k)

o easy to compute

o uniform distribution of keys over {0, 1, ..., m-1}
when h(k,) = h(k,) for k4, k, € U, we have a collision



Division Method

The hash function:
h( k ) = k mod m where m is the table size.

m must be chosen to spread keys evenly.
o Poor choice: m = a power of 10

o Poor choice: m = 20, b> 1

A good choice of m is a prime number.

Table should be no more than 80% full.

o Choose m as smallest prime number greater than
m...,, where
m_.. = (expected number of entries)/0.8



Multiplication Method

The hash function:
h(k)=]m(kA-[kA]) ]
where A is some real positive constant.

A very good choice of A is the inverse of the
“golden ratio.”

Given two positive numbers x and vy, the ratio
x/y is the “golden ratio” if ¢ = x/y = (x+y)/x
The golden ratio:
X2-xy-y2=0 = ¢2-¢-1=0
o=(1+sqrt(5)))2 =  1.618033989...

~= Fib/Fib,_,



Multiplication Method (cont.)

Because of the relationship of the golden ratio to
Fibonacci numbers, this particular value of A in the
multiplication method is called “Fibonacci hashing.”

Some values of
h(k)=[m(k¢"-ko™ )]

=0 fork=0
=0.618mfork=1(¢p'=1/1.618... =0.618...)
=0.236m fork = 2

=0.854m fork = 3

=0.472m fork =4

=0.090m fork =5

=0.708m fork = 6

=0.326m fork=7

=0.777m for k = 32
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Fibonacci Hashing
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Non-integer Keys

In order to have a non-integer key, must first
convert to a positive integer:

h(k)=g(f(k))with f: U — integer
g: 1 —{0.. m-1}
Suppose the keys are strings.

How can we convert a string (or characters)
into an integer value?
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y
Horner s Rule

static 1nt hash(String key, 1nt tableSize)
{
int hashVal = 0;

for (int 1 = 0; i < key.length(); i++)
hashVal = 37 * hashVal + key.charAt(1i);

hashVal %= tableSize;
1f (hashVvVal < 0)
hashVal += tableSize;

return hashVal;
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Example:

value = (s[1] + 31*value) % 101;

= A. Aho, J. Hopcroft, J. Ullman, “Data Structures and
Algorithms”, 1983, Addison-Wesley.

‘A’ =65 ‘h’ =104 ‘o’ =111

value = (65 + 31 * 0) jlo}ss

value = (104 + 31 * 65) % 101 =_99

<«
value = (111 + 31 * 99) % 101 =.
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Example:

value = (s[i1] + 31*value) % 101;
Hash
Key Value
Aho 49 .
Kruse 95 resulting
Standish 60 table is
Horowitz 28 “sparse”
Langsam 21
Sedgewick 24

Knuth 44
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Example:

value = (s[i] + 1024*value) % 128;
Hash

Key Value

Aho 111 likely to
gtrusg_ i 181 result in

andais 171 . 7]
Horowitz 199 clustering
Langsam 109

Sedgewick 107

Knuth 104
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Example:

value = (s[i] + 3*value) % 7;
Hash
Key Value
Aho 0)
Kruse O “collisions”
Standish 1
Horowitz )
Langsam 3)
Sedgewick 2
Knuth 1
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{

Hash'Table Class

public class SeparateChainingHashTable<AnyType>

public
public
public
public
public
public
private
private
private
private
private
private

private

SeparateChainingHashTable( ) {/* Later */}
SeparateChainingHashTable (int size) {/*Later*/}
void insert ( AnyType x ){ /*Later*/ }
vold remove ( AnyType x ){ /*Later*/}
boolean contains( AnyType x ) {/*Later */}
void makeEmpty( ){ /* Later */ }

static final int DEFAULT TABLE SIZE = 101;
List<AnyType> [ ] thelists;

int currentSize;

void rehash( ){ /* Later */ }

int myhash( AnyType x ){ /* Later */ }
static int nextPrime( int n ){ /* Later */ }

static boolean isPrime( int n ){ /* Later */ }

18



HashTable Ops

boolean contains( AnyType X )
o Returns true if X is present in the table.
vold 1nsert (AnyType X)

o If x already in table, do nothing.

o Otherwise, insert it, using the appropriate hash
function.

vold remove (AnyType X)
2 Remove the instance of x, if X is present.
o Ptherwise, does nothing

volid makeEmpty ()
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Hash Methods

private int myhash( AnyType X )

{

int hashVal = x.hashCode( );
hashVal %= thelists.length;
1if( hashval < 0 )

hashVal += thelists.length;

return hashVal;
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Handling Collisions

Collisions are inevitable. How to handle
them?

Separate chaining hash tables

o Store colliding items in a list.
o If mis large enough, list lengths are small.

Insertion of key k
o hash( k) to find the proper list.
o If kis in that list, do nothing, else insert k on that list.

Asymptotic performance

o If always inserted at head of list, and no duplicates,
insert = O(1) for best, worst and average cases
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Hash Class for Separate Chaining
To implement separate chaining, the private
data of the hash table is an array of Lists.

The hash functions are written using List
functions

private List<AnyType> [ ] thelists;
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‘ Chaining




Pertormance ot contains()

contains
o Hash k to find the proper list.

o Call contains( ) on that list which returns a
boolean.

Performance
o best:

o worst:

0 average
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Pertormance ot remove( )

Remove k from table
o Hash k to find proper list.
o Remove k from list.

Performance
o best

o worst

0 average
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Handling Collisions Revisited
Probing hash tables

o All elements stored in the table itself (so table should be
large. Rule of thumb: m >= 2N)

o Upon collision, item is hashed to a new (open) slot.

Hash function
h: Ux{0,1,2,...} = {0,1,...,m-1}
h(k,i)=(h" (k)+f(i))modm
forsomeh’: U—-{0,1,..., m-1}
and some f( i ) such thatf(0) =0
Each attempt to find an open slot (i.e.
calculating h( k, 1)) is called a probe
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HashEntry Class for Probing Hash Tables

In this case, the hash table is just an array

private static class HashEntry<AnyType>{

}

public AnyType element; // the element
public boolean isActive; // false if deleted
public HashEntry( AnyType e )

{ this( e, true ); }

public HashEntry( AnyType e, boolean active )
{ element = e; 1sActive = active; }

// The array of elements

private HashEntry<AnyType> [ ] array;
// The number of occupied cells
private 1nt currentSize;
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Linear Probing

Use a linear function for f( i )
f(i)=c*i
Example:
h’(k)=kmod 10 in a table of size 10, f(i) =i
So that
h(k,i)=(kmod 10 +i) mod 10

Insert the values U={89,18,49,58,69} into the hash
table
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Linear Probing (cont.)

Problem: Clustering
2 When the table starts to fill up, performance — O

(N)

Asymptotic Performance

o Insertion and unsuccessful find, average
A is the “load factor” — what fraction of the table is used
Number of probes = ( ¥2) ( 1+1/( 1-\ )?)

if A = 1, the denominator goes to zero and the number of
probes goes to infinity
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Linear Probing (cont.)

Remove

o Can’ tjust use the hash function(s) to find the
object and remove it, because objects that were
inserted after X were hashed based on X' s
presence.

o Can just mark the cell as deleted so it won’ t be
found anymore.
Other elements still in right cells
Table can fill with lots of deleted junk
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Linear Probing Example

= h(k) = kmod 13
= Insert keys:
m 1841224459 32 3173

o 1 2 3 4 5 6 7 8 9 10 11 12

41 18 | 44 | 59 | 32 | 22 | 31

o 1 2 3 4 5 6 7 8 9 10 11 12



Quadratic Probing

Use a quadratic function for f( 1 )

f(i)=c,i?+c4i+cy

The simplest quadratic function is f(i ) = i?
Example:

Sot

Letf(i)=iFandm=10
leth’ (k)=kmod 10
nat

N(k,i)=(kmod10 +i?) mod 10

Insert the value U={89, 18, 49, 58, 69 } into an
initially empty hash table
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Quadratic Probing (cont.)

Advantage:
2o Reduced clustering problem

Disadvantages:
o Reduced number of sequences

o No guarantee that empty slot will be found if
A =20.5, evenif mis prime

o If mis not prime, may not find an empty slot
evenif A <0.5
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Double Hashing

Let f( 1 ) use another hash function
f(1)=1"hy(k)

Thenh(k,1)=(h’(k)+ i*hy(k))modm

And probes are performed at distances of

(k) 2*hy(k), 3*h,(k),4*hyk), etc

Choosing h,( k)

o Don’ t allow h,( k) =0 for any k.

o A good choice:
h,(k)=R-(kmodR ) with R a prime smaller than m

Characteristics

o No clustering problem
o Requires a second hash function
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Rehashing

If the table gets too full, the running time of the basic
operations starts to degrade.

For hash tables with separate chaining, “too full”
means more than one element per list (on average)

For probing hash tables, “too full” is determined as
an arbitrary value of the load factor.

To rehash, make a copy of the hash table, double
the table size, and insert all elements (from the
copy) of the old table into the new table

Rehashing is expensive, but occurs very
infrequently.
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