
CS206 Introduction to Data Structures

Lab 5

Stacks, Debugging in Visual Studio Code

Thursday, Feb 20

Part 1: Postfix and stacks
Within VSC create a new workspace folder (I will assume you called the folder
Lab05). Import into this folder PostfixEvaluator.java and
TestPostfixEvaluator.java from /home/gtowell/Public206/lab05/. Recall
that the procedure is:
 a. Open a MATE terminal from the menus
 b. cd cs206/Lab05
 c. cp /home/gtowell/Public206/lab05/*.java .
 (do not forget the dot at the end of the line)
This code implements a simple postfix evaluator (using the java Stack class)
that only handles addition and only works on integers. Adapt / extend this
code to do the math operations of subtraction, multiplication and division (as
well as addition). To add other math operators you will need to change the
value of the OPERATORS variable and edit the evalop function (both in
PostfixEvaluator). evalop uses the Java switch statement; a sort of
shorthand for repeated if-then-else. If you are unfamiliar with switch, you can
read about, and experiment with, it at https://www.w3schools.com/java/
java_switch.asp

To run the postfix evaluator, use the main function in TestPostfixEvaluator.

Postfix notation in math, briefly:
In postfix you put the operator last so: 3 3 + results in 6. You can to a lot
more: for instance 3 3 4 + * results in 21 (why?). 3 4 + 3 * also results in
21. The cool thing about postfix is that you do not need order of operations or
parenthesis.

Use your expanded postfix evaluator to come up with a postfix expression that
yields the value 131 and with uses at least 3 different operands (operands can
be used more than once) and does not multiply or divide by 1. So for instance
131 1 / is not acceptable; the formula does result in 131 but fails on the
other two conditions.

https://www.w3schools.com/java/java_switch.asp
https://www.w3schools.com/java/java_switch.asp

Part 2: Debugging in VSC
VSC includes a debugging facility far superior to System.out.println.
This is well described in https://code.visualstudio.com/docs/java/java-
debugging. Realistically, this article covers much more on debugging than you
will need for this course, the sections on Breakpoints, Pause and Continue, Step
In/Out/Over, Variables, and Call Stacks are more than enough (for today).
Using the code from Part 1 (or any previous assignment) experiment with
breakpoints and the other things described in this article. Be sure you
understand how to set breakpoints (and why), how to view the value of
variables, how to execute a program line by line, and how to resume
execution.

I expect that you will never again use print statements for debugging.

After reading about debugging, go back to the postfix evaluator program and
figure out how to set a breakpoint(s) so you can observe the actual contents of
the stack as a postfix operation is is evaluated.

When you are complete with both parts, hand in a this paper with your name
and the formula you wrote to get 131. Also show the contents of the stack
immediately prior to the execution of each operator. Put the stacks in the
whitespace below.

https://code.visualstudio.com/docs/java/java-debugging
https://code.visualstudio.com/docs/java/java-debugging

