
CS206 Lec01

CS206 Intro to Data Structures

Spring 2020

1

CS206

Course Goals

2

1.Become a better computer scientist
2.Learn about common data structures

1. Implementation
2. How and when to use each

3.Understand Object Oriented program
design and its implementation in Java

4.Develop an understanding of UNIX
5.Become a better Java programmer

CS206 Lec01

Things to Know
• Course website

▫ www.cs.brynmawr.edu/cs206
▫ usually updated after each class

▫ Syllabus
▫ www.cs.brynmawr.edu/cs206/syllabus.html

▫ usually updated on weekend for next weeks material
▫ Homeworks

▫ Approximately weekly.
▫ Typically due on Thursday before midnight
▫ Help in lab (Park 231) Sunday-Thursday 6:30-9:30 pm

▫ starting next week

3

http://www.cs.brynmawr.edu/cs206
http://www.cs.brynmawr.edu/cs206/syllabus.html

CS206 Lec01

More Things to Know

• CS account
▫ If you do not have a cs account, you will

• Lab:
• TH 2:25pm-3:45pm
• Attendance is required (and part of grade)

• There is lab this week
• Software: Java, Visual Studio Code, Unix

4

CS206

Java

• “Object Oriented” Language
• Data Types

• Base
• fixed set
• Initial lower case letter (e.g. int)

• Objects (Classes)
• User extensible
• Initial capital letter (by convention)

5

CS206 Lec01

Base/Primitive Types

• Primitive types define memory used to
store the data

6

Extant definitions of primitives
subject to change

CS206 Lec01

Classes and Variables
• A class is a description of what an object

stores (its data) and how it functions
▫ instance variables
▫ methods

▫ Every variable is either a base type or a
reference to an object

• Every object is an instance of a class

7

CS206 Lec01

Creating and Using Objects

• In Java, a new object is created by using the new
operator followed by a call to a constructor for
the desired class.

• A constructor is a special method that shares the
same name as its class. The new operator returns
a reference to the newly created instance.
• every method other than a construction must

give the type of information it returns
• Almost everything in Java is a class

• More properly, almost all variables in Java
store references to instances of a class

8

CS206 Lec01

Class Example

9

public class InchWorm
{
 private int measurement;
 public InchWorm() {
 this.measurement=1;
 }
 public InchWorm(int startingMeasurement) {
 this.measurement = startingMeasurement;
 }
 public InchWorm(InchWorm iw) {
 this.measurement = iw.getMeasurement();
 }
 public int getMeasurement() {
 return this.measurement;
 }
 public void doubleM() {
 this.measurement *= 2;
 }
 public String toString() {
 return "The marigold measures " + this.measurement + " inches";
 }
 public void reset() {
 this.measurement=1;
 }

CS206

Class Part2

10

 public static void main(String[] args) {
 InchWorm inchworm = new InchWorm();
 inchworm.doubleM();
 System.out.println(inchworm);
 InchWorm inchworm2 = new InchWorm(inchworm);
 inchworm2.doubleM();
 System.out.println(inchworm2 + " " + inchworm);
 }
}

CS206 Lec01

Access Control Modifiers

• public — all classes may access
• private — access only within that

class.
• “” (read as package) — access only by

classes within the package
• (I hate significant whitespace)

• The package is generally the code
you are working on.

11

CS206

Static
• When a variable or method of a class is declared

as static, it is associated with the class as a
whole, rather than with each individual instance
of that class.

• Only acceptable use (at least for this course):
• In methods …

• public static void main(String[]
args)

• In variables .. to declare constants
• public static final double
GOLDEN_MEAN =1.61803398875;

12

CS206 Lec01

Casting (of base types)

• Assignment
REQUIRES type
equality

• Use casting to
change type

• Must explicitly cast if
there is a possible
loss of precision

private void trial()
 {
 int x = 5;
 double y = 1.2;
 y = x;
 x = y;

 y = (double) x;
 x = (int) y;
 }

13

CS206 Lec01

Object Casting

• Widening cast –
• to something that was

extended from
• Narrowing cast –

• to an extended class
• Java will perform an

implicit widening cast, but
not a narrowing
• Narrowing cast may

assume information
that is not present.

14

public class Caster {
 private class A {}
 private class B extends A {
 private int bvar;
 public B() { bvar = 1; }
 }
 public void tester() {
 A a = new A();
 B b = new B();
 A aa = b;
 B bb = (B)a;
 }
}

CS206 Lec01

.equals: Object Equality

• Do not use ==

• Use == only
when
comparing base
types

• Review your
strings and
String class
methods

15

public class StringEqual {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");
 System.out.println("str1==str2: "

+ str1 == str2);
 System.out.println("str1==str2: "

+ (str1 == str2));
 System.out.println("str1.equals(str2): "

+ str1.equals(str2));
 }
}

CS206 Lec01

Wrapper Types

• Most data structures and algorithms in
Java’s libraries only work with object
types (not base types).

• To get around this obstacle, Java defines
a wrapper class for each base type.

• Implicitly converting between base types
and their wrapper types is known as
automatic boxing and unboxing.

16

CS206

Autoboxing and unboxing

17

public class Wrapper
{
 public void w1(Integer ii) {
 System.out.println(ii);
 int i3 = ii; // auto unboxing
 System.out.println(i3*i3);
 System.out.println(i3*ii); // auto unboxing
 }
 public static void main(String[] args) {
 Wrapper w = new Wrapper();
 w.w1(5); // autoboxing
 }
}

CS206 Lec01

What you should know/review

• variables
• expressions
• operators
• methods
▫ parameters
▫ return value

• conditionals
• for/while loops

• class design and
object construction
▫ instance variables
▫ constructor
▫ getters/setters
▫ class methods
▫ new

• arrays
• arrays of objects
• String

18

