
Stacks and Queues

CS 151 - Introduction to Data Structures

Assignment 4 - due Friday 2/24

1 Tasks

Before we start, it is important to note that you are not allowed to change the given
Stack.java, IntStack.java, ArrayStack.java, Queue.java, and Deque.java.

Part 1. Copy ArrayStack.java and Stack.java from ~dxu/handouts/cs151/

code/5-1. Copy Queue.java from ~dxu/handouts/cs151/code/5-2. Write
a class called TwoStacksQueue that implements the Queue interface as fol-
lows.

1. Your class will store two ArrayStack objects as instance variables but
no other. A TwoStacksQueue object is a Queue and should behave as
a Queue (FIFO). Since you are using two stacks to simulate a queue, it
will certainly not be the most efficient implementation of a queue and
that’s ok - just as long as you know that and can analyze the runtime
appropriately in the README - see below. There should not be any other
array/ArrayList/linked list used within your implementation.

2. Your README should provide a discussion on the design of your data
structure, in particular how you implemented enqueue and dequeue

operations. In addition, you should provide a worse-case big-O analysis
of each of these operations.

Part 2. Implement the Deque ADT (double-ended queue where we can insert
and delete at both ends) with an array used in a circular fashion. Copy
Deque.java from ~dxu/handouts/cs151/code/5-2, which specifies the the
Deque interface that you must implement. Name your class ArrayDeque.

Study how we implemented the Queue ADT using a circular array for refer-
ence. You should find the discussion in Section 6.3 of your textbook helpful
as well.

1



Part 3. (Extra Credit) Implement a stack data structure (name it NewStack),
storing integers, that supports the usual operations size, isEmpty, push,
pop, top and an additional operation minElement, which returns (but does
not remove) the smallest element currently in the stack. All operations
(except for toString) should run in O(1) worst case time - note that this
means no loops of any kind. There are different designs to achieve the O(1)
minElement, differing mainly in the amount of additional space. Two main
approaches are O(1) space or O(n) space. Explain how your data structure
works in your README and justify the O(1) minElement, together with
the amount of space used. It is acceptable to write a non-generic NewStack

that only stores integers and doesn’t implement the Stack interface. In that
case, implement the IntStack interface instead.

2 Additional Requirements

These requirements apply to the implementations of all three parts (or two parts,
if you are not doing extra credit) above.

1. Provide a zero-parameter constructor which constructs an object (of the cor-
responding class) of a default size. Provide also a one-parameter construc-
tor that constructs an object (of the corresponding class) of the parameter-
specified size. Refer to the implemenation of the constructors of ArrayStack
or ArrayQueue for details.

2. Follow your textbook’s design and return null for any attempted operations
on empty

3. Any attempt to insert into a full data structure, as well as any other un-
avoidable error should result in the Java run-time exception
IllegalStateException being thrown.

4. Override toString to return a String that contains the contents of the
data structure in the following format, starting from the first-in element as
element1:
(elment1, element2, ..., elementn).
Note that in case of a stack, this means top is printed last, not first.

3 Testing

A test program CheckFormat_A4.java has been provided for you. Note that this
mostly makes sure that your output format is as expected for our autograder.

2



Although some correctness testing is included, it’s minimal. You are expected
to write your own tests. More specifically, once you pass CheckFormat_A4.java,
write a driver program Main.java that tests all the methods you have implemented
in your TwoStacksQueue, ArrayDeque, NewStack implementations in above parts.
You should include enough tests to clearly demonstrate that your implementation
works. We will test by replacing your Main.java with one of our own, calling your
methods and using your classes. Make sure you test thoroughly!

4 Electronic Submissions

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

Write-up: Contents as discussed above for Part 1 and 3

2. Source files: all .java files

3. Data files used: none

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README and source files) in a directory called A4.
Then follow the directions here:
https://cs.brynmawr.edu/systems/submit_assignments.html

3


	Tasks
	Additional Requirements
	Testing
	Electronic Submissions

