
1

Question 1 (10 points) For each of the following, either fill in the correct answer or answer True
or False, as appropriate:

1. What is the word length of the LC-3 ALU? ___16 bits______

2. How many data registers does LC-3 have? _______7______

3. What is the word length (addressability) of LC-3 memory? ___16 bits______

4. X is a Condition Code Register in LC-3 (True/False) ____False______

5. What does ISA stand for? Instruction Set Architecture

6. LC3 is a hybrid CISC/RISC architecture (True/False) _____True______

7. What keeps track of the next instruction to be executed? ______PC_______

8. .END is an LC-3 instruction to indicate end of program (True/False)_____False_____

9. LC-3 has two I/O devices: keyboard and display (True/False) _____True______

10. LC-3 opcodes are coded in 5 bits (True/False) _____False_____

2

Question 2 (15 points) Write short answers to each of the following.
Part A: In LC-3 what are MAR and MDR? What is their function? How many bits are there in the
MAR and MDR?

MAR = Memory Address Register
MDR = Memory Data Register

While reading from memory, the address of the location to be read is first placed in the MAR.
Then, the data from that memory location appears in the MDR. While writing, the data to be
stored is first placed in the MDR. Then the adddress where it is to be stored is placed in the
MAR.

Part B: In LC-3 what are the condition code registers? How are they used?

N, Z, and P are the three condition codes in LC-3. Every time a data is moved some place
(registers or memory), or an operation is performed, the condition codes are set depending on
the value.

Part C: In LC-3 what is the purpose of the Instruction Register?

Contains the fetched instruction from the memory location pointed to by the PC. This is the
instruction to decoded and executed.

Question 3 (10 points)
Part A: The LC-3 has 15 opcodes that define the instructions in its ISA. However, the instruction
set charts of LC-3 (see page 2) lists 19 instructions. Explain.

Because instructions like ADD and AND use two different addressing modes. Also, there are two
Jump instructions that use the same opcode. These four variations make up 15+4 = 19
instructions.

Part B: For each of the following categories, name all the LC-3 instructions that fall in that
category (Select from: ADD, AND, Branch, Jump, Load, NOT, Store, HALT):

Operate Instructions

ADD, AND, NOT

Data Movement Instructions

Load, Store

Control Instructions

Branch, Jump, HALT

3

Question 4 (20 points) For each of the following, decode each instruction by listing the
following: the opcode, all operands, the addressing mode used, and the task it performs using
symbolic names (e.g. Load, ADD, R3, R2, #11, R2 = R2 + 3, etc.)):

A.
0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1

Opcode: __0000 (BR)_________ Operands: ___#-5______________

Addressing Mode: __PC Relative mode__ Task: _if P then PC = PC - 5_______
B.

0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0

Opcode: ___0001 (ADD)________ Operands: __R6, R6, R6________

Addressing Mode: __Register mode_____ Task: __R6 = R6 + R6________

C.

0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0

Opcode: ___0001 (ADD)_______ Operands: __R6, R6, #6________

Addressing Mode: Register+Immediate mode Task: ___R6 = R6 + 6__________

D.

1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0

Opcode: ___1101 (Reserved)__ Operands: _____N/A___________

Addressing Mode: ___N/A______________ Task: _Not an instruction________

E.

0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1

Opcode: __0010 (LD)_________ Operands: __R7, #9____________

Addressing Mode: ___Register+PC Relative_ Task: ___R7 = M[PC+9]_________

4

Question 5 (15 points) Encode each of the following tasks into an equivalent LC-3 machine
language instruction. Where needed, the address of the current instruction is provided.:

A. R6 = NOT(R6)

 1001 110 110 111111

B. x600A R4 = M[x6000]

 0010 100 111 110 101 ; R4 = M[PC - 11]

C. R3 = M[R0]

 0110 011 000 000000

D. x600D Branch if Positive x6008

 0000 001 11111 1010 ; BR if P to PC-6

E. R5 = R5 – 3

 0001 101 101 1 11101

5

Question 6 (15 points) Write a sequence of LC-3 assembly language instructions to accomplish
the tasks given (use Question 6 (15 points) Write a sequence of LC-3 assembly language
instructions to accomplish the tasks given (use comments to indicate what each instruction
does):

A. R7 = R3 - R0

1001 110 000 111111 NOT R6, R0 ; R6 = NOT(R0)
0001 110 110 1 00001 ADD R6, R6, #1 ; R6 = R6 + 1
; Now R6 is -R0
0001 111 011 000 110 ADD R7, R3, R6 ; R7 = R3 + R6

[Note: Not a good idea to change values in R3 or R0. Why?]

B. R7 = R6

0101 111 111 1 00000 AND R7, R7, #0 ; First, set R7 =0
0001 111 111 000 110 ADD R7, R7, R6 ; Add R6 to R7

Alternately:
0001 111 110 1 00000 ADD R7, R6, #0 ; R7 = R6 + 0

C. R7 = R7 * 2

There is no multiply instruction. But multiplication by 2 can be achieved by adding
the number to itself.

0001 111 111 000 111 ADD R7, R7, R7 ; R7 = R7 + R7

D. Swap the contents of R6 and R7.

; We will use R5 as temp
0001 101 110 1 00000 ADD R5, R6, #0 ; R5 = R6 + 0
0001 110 111 1 00000 ADD R6, R7, #0 ; R6 = R7 + 0
0001 111 101 1 00000 ADD R7, R5, #0 ; R7 = R5 + 0

E. R7 = R1 + R2 + R3

0001 111 001 0 00 010 ADD R7, R1, R2 ; R7 = R1 + R2
0001 111 111 0 00 011 ADD R7, R7, R3 ; R7 = R7 + R3

6

Question 7 (15 points) Write an LC-3 Assembly Language program to add a bunch of integers
(quantity unknown). The integers are stored starting from address x3100. A sentinel value of -1 will
indicate the end of input. Below, an algorithm, register allocations, and a flow chart for accomplishing
the task are provided.

Algorithm:
sum ← 0
n ← first number
while n != -1 do
 sum ← sum + n
 n ← next number

We will use the following registers:

R1: starting address of data (x3100)
R3: sum
R4: n

The flowchart is shown on the right. Your task is to code
the flowchart, into a complete LC-3 Assembly Language
Program. The program should be stored starting from
x3000. Continue on next page if needed.

 .ORIG x3000
START LEA R1, DATA ; R1 < x3100
 AND R3, R3, #0 ; R3 <- 0
 LDR R4, R1, #0 ; R4 <- M[R1]
; while R4 != -1
LOOP BRn DONE ; YES (R4 = -1)
; do
 ADD R3, R3, R4 ; R3 <- R3 + R4
 ADD R1, R1, #1 ; R1 <- R1 + 1
 LDR R4, R1, #0 ; R4 <- M[R1]
 BR LOOP
DONE HALT
 .END
; Data
 .ORIG x3100
DATA .FILL n1
 .FILL n2
 … … …
 .END

