
CMSC B240 Computer Organization - Spring 2025
Lab Activity #8 – Subroutines

1

Here is an algorithm for multiplication (using repeated addition):

Given A, B
result ← 0

while B > 0 do

result ← result + A
B ← B – 1

We will use some additional registers (R0 and R2) in the LC-3 algorithm:

R0 ← R3 (save value of A)
R3 ← 0 (initialize result)
R2 ← R1 (save value of B) while R2 != 0 do
R3 ← R3 + R0
R2 ← R2 -1

Since the algorithm uses R0, and R2, we will need to save and restore those registers in the
subroutine.

Here is the LC-3 code for MULT:

.ORIG x3020
MULT ST R0, SaveR0 ; Save R0 and R2

ST R2, SaveR2
ADD R0, R3, #0 ; R0 ← R3
AND R3, R3, #0 ; R3 ← 0 (result)
ADD R2, R1, #0 ; R2 ← R1

; while R2 != 0
LOOP BRz MULDone
; do

ADD R3, R3, R0 ; R3 ← R3 + R1
ADD R2, R2, #-1 ; R1 ← R1 - 1
BR LOOP

MULDone LD R0, SaveR0 ; Restore R0 and R2
LD R2, SaveR2
RET

SaveR0 .BLKW 1
SaveR2 .BLKW 1

.END

Implement a complete program in the LC-3 simulator and test to make sure the subroutine
works correctly. Try different values of A (>0) and B (>=0).

CMSC B240 Computer Organization - Spring 2025
Lab Activity #8 – Subroutines

2

Nested Subroutines

Recall from class that when a subroutine calls another, we must save (and restore) the return
address(es) that are in R7. To try this, let us write a subroutine FACT, that computes the
factorial of a given number (>=0). Here is an algorithm that uses an iterative solution:

Fact(n):

result ← 1
i ← n
while i != 0 do

result ← result * i
i ← i – 1

Assume that n will be supplied in the register R0, and the subroutine returns the result also in
R0. That is,

R0 ← FACT(R0)

Here is the LC-3 algorithm. We are using R3 to store the result:

R3 ← 1
R1 ← R0
while R1 !- 0 do

R3 ← R3 * R1
R1 ← R1 – 1
R0 ← R3 (put result back in R0)

Since we are using R1 and R3, we will need to save R1 and R3 in FACT. We will make use of
MULT as we wrote above to do the multiplication. That also means we will need to save and
restore R7 before calling MULT in FACT. Here is the complete algorithm:

FACT(R0)

Save R1 and R2
R3 ← 1
R1 ← R0
while R1 != 0 do

R3 ← R3 * R1 (use MULT)
R1 ← R1 – 1

R0 ← R3 (put result back in R0)
Restore R1 and R2

return

Exercise 2: Implement the FACT subroutine as described above and use it to compute the
factorial of 4. Try a couple of other values.

Exercise 2 is your Assignment 5 and it will be due on Tuesday, April 16. See the class web
page for a complete description of what to hand in.

CMSC B240 Computer Organization - Spring 2025
Lab Activity #8 – Subroutines

3

LC-3 Assembly Cheat Sheet

Instruction Action Addressing Mode

ADD R2, R2, R3 R2 = R2 + R3 Register

ADD R2, R2, #1 R2 = R2 + 1 Register, Immediate

AND R2, R2, R3 R2 = R2 AND R3 Register

AND R2, R2, #1 R2 = R2 AND 1 Register, Immediate

BR[n][z][p] LABEL If [n][z][p] Go to LABEL CC, PC-Relative

HALT Stop program execution

IN R0 = Input char from keyboard None

JMP R1 PC = R1 Register

JSR

JSRR

LD R2, LABEL R2 = m[LABEL] Register, PC-Relative

LDI R2, LABEL R2 = m[m[LABEL]] Register, Indirect

LDR R2, R0, #n6 M[R0 + n] Base Register

LEA R2, LABEL R2 = LABEL Register, PC-Relative

NOT R2, R1 R2 = NOT(R1) Register

OUT Output R0 to Console None

PUTS Output String at M[R0] to
console

None

RET

RTI

ST R2, LABEL M[LABEL] = R2 Register, PC-Relative

STI R2, LABEL M[M[LABEL]] = R2 Register, Indirect

STR R2, R0, #n6 M[R0 + n] = R2 Register, Base Register

TRAP trapvect8 Execute Service # trapvect8 Immediate

