# Pedagogy of Data Science within other Disciplines

Eric Miller, Assistant Professor Department of Biology



# Pedagogy of Data Science within other Disciplines -in Biology

Eric Miller, Assistant Professor Department of Biology



HAVERFOR College

#### Data Science + Biology

 How do we introduce/demonstrate the intersection of data science with discipline knowledge to all students?

 How do we prepare a subset of students for graduate school in topics around this intersection?

 How can I prepare students with the framework / skills to help with my lab's bioinformatic research?

#### Data Science-y Bio Courses

Advanced Lab in Bioinformatics

aka Bioinformatics Superlab (2021, 2022)

Programing in Biology: Bio104 (Sp2024)

+ other 104 courses: astrophysics, chemistry, linguistics, physics

• Biostatistics (Fa2023 + Future curriculum)

#### Superlabs @ Haverford

- Discovery-based learning; novel research for 7-14 weeks
- Give students the science background + general question
- Student research in 7-20 parallel groups



#### Superlabs @ Haverford

- Discovery-based learning; novel research for 7-14 weeks
- Give students the science background + general question
- Student research in 7-20 parallel groups
- Develop hypothesis, design experiment, complete experiment, analysis, communicate findings
- Students do this 2-4 times in their 3rd year
- Resulting data is publishable (initial studies, prelim. grant data)

#### Superlab •00000

#### Superlabs @ Haverford

- 50+ years at Haverford Biology; offshoots of:
  - Chemistry Superlab
  - Biochemistry Superlab
  - Neurobiology Superlab
  - Bioinformatics Superlab

High level of departmental support



- Goals
  - Working with 'big data' but without coding
  - Using Galaxy (genetic analyses) and RStudio (graphing and stats)



| <b>Bowtie2</b> - man reads against reference genome (Galaxy Version 2.4.2+galaxy0)                                       |            |         |    | History 6                                              | ;+ 🗆 🛱 |
|--------------------------------------------------------------------------------------------------------------------------|------------|---------|----|--------------------------------------------------------|--------|
|                                                                                                                          | な Favorite | ▼ Optio | ns | search datasets                                        | 88     |
| Is this single or paired library                                                                                         |            |         |    | BLASTing                                               |        |
| Single-end                                                                                                               |            |         | •  | 31 shown, 27 deleted                                   |        |
| FASTA/Q file                                                                                                             |            |         |    | 429.61 MB                                              |        |
| C D 51: ClustalW on data 49: fasta                                                                                       |            | •       | Þ  | 51: ClustalW on data 49: f                             | • A ×  |
| Must be of datatype "fastqsanger" or "fasta"                                                                             |            |         |    | asta                                                   | 0 y 11 |
| Write unaligned reads (in fastq format) to separate file(s)                                                              |            |         |    | 50: MAFFT on data 49                                   | ⊛ # ×  |
| Yes No                                                                                                                   |            |         |    | 49: luxSUnique_Outgrou                                 | ⊛ # ×  |
| un/un-conc (possibly with -gz or -bz2); This triggersun parameter for single reads andun-conc for paired reads           |            |         |    | ps.faa                                                 |        |
| Write aligned reads (in fastq format) to separate file(s)                                                                |            |         |    | 48: tblastn luxS_typical v                             | • / ×  |
| Yes No                                                                                                                   |            |         |    | s '5SpeciesOutgroup'                                   |        |
| al/al-conc (possibly with -gz or -bz2); This triggersal parameter for single reads andal-conc for paired reads           |            |         |    | 47: tblastn luxS_typical v                             | ● / ×  |
| Will you select a reference genome from your history or use a built-in index?                                            |            |         |    | s sspeciesourgroup                                     |        |
| Use a built-in genome index                                                                                              |            |         | •  | 46: tblastn luxS_typical v<br>s '5SpeciesOutgroup'     | ● ∲ ×  |
| Built-ins were indexed using default options. See `Indexes` section of help below                                        |            |         |    | 12: Juve typical                                       |        |
| Select reference genome                                                                                                  |            |         |    | 45. lux5_typical                                       |        |
| No options available                                                                                                     |            |         | •  | 42: Join neighbors on dat<br>a 41: Calculated distance | ● ᢔ ×  |
| If your genome of interest is not listed, contact the Galaxy team                                                        |            |         |    | S                                                      |        |
| Set read groups information?                                                                                             |            |         |    | 21 lines                                               |        |
| Do not set                                                                                                               |            |         | •  | format: nnx, database: ?                               |        |
| Specifying read group information can greatly simplify your downstream analyses by allowing combining multiple datasets. |            |         |    | 0.00%                                                  |        |
| Select analysis mode                                                                                                     |            |         |    | 0.01%                                                  |        |

Superlab •••000

- Goals
  - Working with 'big data' but without coding
  - Using Galaxy (genetic analyses) and RStudio (graphing and stats)
  - All parts of 'sciencing':

Observation / prediction; generate testable hypothesis; design + execute experiment; results + interpretation; communication and 'next steps'



| Dates               | Monday (1.5 hours)                                                                                                                | Tuesday (3 hours)                                                                                                                                                                                                                                                                                        | Homework for Thursday                                                                                                                                                                                                                                                                                                                | Thursday (3 hours)                                                                                                                                                           | Homework for Monday                                                                                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 18 - 21     | No Class                                                                                                                          | Course dynamics and syllabus. Talk<br>about lab notebooks. Present research<br>question and Streptococcus. Discuss<br>quorum sensing and HGT.<br>Bioinformatics basics: Fears / anxiety<br>about this class. What is data? Text vs.<br>binary. Sublime text to look at data. Excel<br>to work with data. | RStudio reading (Chapter 2 -The Very<br>Basics, 2.4,2.5 optional based on<br>interest only) https://rstudio-<br>education.github.io/hopr/basics.html                                                                                                                                                                                 | Working with RStudio: basics + getting<br>data into RStudio (Tutorial on Moodle)                                                                                             | Read parts of a QS paper for discussion<br>on Monday.<br>Submit a question about paper by 10pm<br>on Sunday.                                                                                        |
| January 24 - 28     | Discussion of QS paper                                                                                                            | Introduction of scientific writing<br>assignment<br><del>Working with RStudio: Tutorial on-<br/>Graphing-</del> Lecture: Statistics in R, Work<br>on independent Graphs                                                                                                                                  | Create a novel graph using S. suis<br>metadata. Be prepared to give a 1<br>minute presentation of your graph to the<br>class, or no graph but an explanation of<br>what was challenging in your attempt to<br>make a graph.<br>Submit graph (or not graph and<br>explanation of what was challenging) on<br>Moodle by 10am Thursday. | Discussion of graphs — Break into 2<br>groups of 7 to do this?<br><del>Locturo: Statistics in R</del><br>Start Statistics Tutorial                                           | Submit a question on statistics in R by<br>10am on Monday<br>Work on outline of scientific writing<br>assignment                                                                                    |
| January 31 - Feb. 4 | Questions on statistics in R<br>Lecture on Next Generation Sequencing<br>and mapping to reference genomes and<br>variant calling. | Finish statistics tutorial                                                                                                                                                                                                                                                                               | Submit question that you have on<br>mapping reads (from the tutorial or more<br>of a conceptual question) to ask on<br>Thursday.                                                                                                                                                                                                     | Download data, then discuss Next<br>Generation Sequencing questions.<br>Working with Galaxy: basics + tutorial on<br>short read mapping<br>RStudio part of mapping tutorial. | Finish creating a graph of your road sets<br>(from the RStudio part of the tutorial),<br>and be prepared to share the graph and<br>your interpretation on Monday<br>Submit graph by 10am on Monday. |
| Februrary 7 - 11    | Review of graphs                                                                                                                  | RStudio part of mapping tutorial (if                                                                                                                                                                                                                                                                     | Check in with Galaxy; Graph your results                                                                                                                                                                                                                                                                                             | Review/discuss graphs                                                                                                                                                        | Outline of scientific writing assignment                                                                                                                                                            |
| • Highly s          | tructured classes                                                                                                                 |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      | In class exercise of which assemblies to-<br>keep for our dataset                                                                                                            | due                                                                                                                                                                                                 |
| •                   | Lectures                                                                                                                          | <ul> <li>Skill-based tu</li> </ul>                                                                                                                                                                                                                                                                       | itorials                                                                                                                                                                                                                                                                                                                             | Presentation of quoroum sensing<br>diversity challenge — students form                                                                                                       |                                                                                                                                                                                                     |
| •                   | Primary literature                                                                                                                | <ul> <li>Informal peer</li> </ul>                                                                                                                                                                                                                                                                        | reviews                                                                                                                                                                                                                                                                                                                              | QS systems.                                                                                                                                                                  |                                                                                                                                                                                                     |
| •                   | Emphasis on students                                                                                                              | presentation of their v                                                                                                                                                                                                                                                                                  | work, early and often                                                                                                                                                                                                                                                                                                                | In-class reading of group papers.<br>Student group time to work on project                                                                                                   | As a group, <del>prepare a graph on your-<br/>data</del> Summary (table) of diversity (signal<br>for Tuesday.                                                                                       |

Superlab ••••00

Balanced with flexibility for when research goes sideways

- Datasets:
  - Speciation and hybridization of 100's of Saccharomyces yeast genomes
  - Searching 22,000 S. pneumoniae bacterial genomes for variation in signaling peptides; next steps with this variation



- What's good:
  - Increased subject knowledge, broad-scale bioinformatics knowledge
  - Greatly improved hypothesis testing, scientific communication

- Unexpected difficulties
  - Technical issues (dataset, BLAST algorithm not working)
  - Need to spend time on basic computing
  - Not enough time for 'proper' discussion of statistics
  - Harder to show students why an approach is suboptimal

#### Superlab •••••

#### Programming in

#### Programming 000

### Programming in

• 2 pathways for basic programming CSI05 + CSI06

\_104 + CS107

**Programming** ● ○ ○

- Basics of: types, data structures, OOP, data management + access
- Co-taught within department and CS faculty (for labs)
- Also as an intro to the topic

Genotype AACGAGGUUUU...UGUCC





• Genotypes

Phenotypes

Differential fitnesses



Genotype AACGAGGUUUU...UGUCC





- Genotypes
- Genotypes mutating,

Phenotypes creating different phenotypes Differential fitnesses and differential fitnesses

• Evolution of a population of RNA molecules towards a target shape

Influence of:

**Programming** •• • •

Genotype AACGAGGUUUU...UGUCC





- Genotypes
- Genotypes mutating,

Phenotypes creating different phenotypes Differential fitnesses and differential fitnesses

• Evolution of a population of RNA molecules towards a target shape



•Selection environment (simulated temperature)

•Ect.

#### **Programming** •••

Goals:

- Programing + documentation
- 4 forces of evolution + impact on asexual populations



Goals:

- Programing + documentation
- 4 forces of evolution + impact on asexual populations
- How computational biology can be used to test biological hypotheses
- Students start to think about the process, and their role, in science

**Programming** 

• Help relieve CS faculty burden

#### Biostatistics

#### Biostatistics

#### Biostatistics

- 7-week elective (Fa2023)
- Needs to cover data-handling; RStudio; graphing; statistics

• Future: Semester-long course, required for major



### Challenges

- Math anxiety / computing anxiety
- Starting point for computing skills
- Course scheduling

• Teaching capacity



### Challenges

- Math anxiety / computing anxiety
- Starting point for computing skills
- Course scheduling

| Fall<br>Year1 | Spring<br>Year1           | Fall<br>Year2 |         |
|---------------|---------------------------|---------------|---------|
| Language      | Language                  | Available     | Declare |
| Writing       | riting Writing* Available |               | major   |
| Chemistry     | Chemisty                  | Chemistry     |         |
| Available     | Biology                   | Biology       |         |

- Teaching capacity
  - Math / Stats department, CS department
  - Biology department: Who can teach biostats? Programming?

#### Challenges ••

#### Eric Miller Microbial Ecology and Evolution Laboratory <u>emiller3@haverford.edu</u>

