
The following are — for the most part — answers from students that got 
full credit for a question.   In some cases I have added comments or a 
supporting statement. I copy answers without attribution or permission.


Proff Towell


1.) (Required) Suppose there exists a language, DyGo, which uses 
dynamic scoping but is otherwise identical to Go. Consider the 
following DyGo program. (The program below will not compile under 
Go, but will under DyGo. ) 

Part 1) What is the output of this program? 

AA 5 3 // x from input, y from definition on line 9 
BB 5 // x from main, y from global 
AA 10 3 // x from input, y from definition on line 9 
BB 5 hello // x from main, y from scope 22-25. 
AA20 3 // x from input, y from scope 26 to 31. 
BB 20 goodbye // x from scope 26-31, y from scope 26-31. 

Part 2) Identify every scope (using the line numbers) and the variables 
that are accessible within that scope. If there are two variables of the 
same name that could be accessible within a scope then clearly identify 
the one that is visible. 

Global scope: line 1 to line 32: Var x 

Var y Func a 

called on line 29, gets y from the inner scope defined from 26 to 31. 
Func b 

Func b: lines 13 to 15. 
No local variables override-- can see x and y from its calling scope. 
When called on line 20, gets x from main() and y from the global scope. 



Func a: Lines 8 to 11 
Variable y. One defined in scope func a y := 3 is the one that’s 
accessible. Hides the global variable. 
Hides the variable x it inherits from its calling scope with its parameter 
x. When called on line 23, gets y from the inner scope from 21 to 25, 
when 

25. 
from the same scope. 

When called on line 24, gets x from main() and y from the inner scope 
from 21 to 

When called on line 30, gets x from the inner scope defined from 26 to 
31, and y 

Func main from lines 17 to 32 
Sets value of global variable x equal to 5 

Inner scope: Line 21 to 25. 
Variable y := “hello”, hides global variable y 

Inner scope Line 26 to 31 
Variable x hides x defined in func main, x:= 20 Variable y hides the 
global variable y, y = “goodbye” 



Example of this (small Go program portion illustrating only this statement):

var hh *int

func one() {

     aa := 1

     hh = &aa

}

This program illustrates this statement as the variable aa is a local variable created within the one 
function thus it SHOULD be reachable only within this function; HOWEVER, because the 
global variable hh is a pointer, pointing to aa’s address and thus it’s value, the variable aa now 
continues to exist even after its enclosing function (the one function) has returned.



3.   VSC	warns	about	recursion	in	line	6	because	the	fmt.Sprintf()	function	takes	in	len(item)	and	
the	item	itself	rather	than	an	instance	of	the	item	or	a	casting	of	the	item.	If	a	function	
implements	method	String()	string,	that	method	will	be	invoked	to	convert	the	object	to	a	
string.	Item	is	not	a	string	but	rather	the	object	of	the	type	that	the	function	is	calling,	if	we	
think	in	terms	of	object-oriented	programming	languages.	The	stack	overflow	occurs	because	
the	program	is	trying	to	use	more	memory	space	in	the	call	stack	than	has	been	allocated	to	the	
stack.	Each	recursive	call	uses	space	on	the	stack,	so	if	the	recursion	is	too	deep/infinite	(which	
it	is	in	this	case	because	we	did	not	provide	a	vase	case	as	we	did	not	intend	for	recursion	to	
happen),	then	you	get	a	stack	overflow	error.


The	doNso()	function	does	not	create	a	stack	overflow	and	doSo()	does	because	doNso()	creates	
a	string	instance	of	item	rather	than	putting	the	item	itself	through	fmt.Sprintf.


Missing	from	this	answer	is	that	the	change	has	the	effect	because	Go	uses	static	method	
binding,	so	the	cat	over	to	string	in	nso	change	s	the	Strinf	function	being	called.			The	Change	
does	not	work	in	Java	because	it	uses	Dynamic	method	binding.		Hence,	the	cast	to	Object	(in	
my	example	code)	does	not	change	the	toString	method	that	is	being	ised.




4.	Tuple	assignment	in	Go	may	seem	like	syntactic	sugar,	and	in	some	cases	it	is,	however	in	
others	it	proves	to	be	quite	useful.	It	allows	for	quicker,	more	efficient	coding	with	shorthand	
styles	while	also	allowing	for	more	flexibility,	like	Go	is	known	for.	

An	example	of	tuple	assignment	usage	that	would	be	considered	syntactic	sugar,	even	with	its	
efficiency	and	easy	use	would	be	when	we	want	to	switch/swap	two	variable’s	values	with	each	
other.	For	example,	let’s	say:

								x	:=	1

								y	:=	2

								x,	y	=	y,	x

This	is	of	course	a	faster	way	to	swap	variable	because	it	uses	only	three	lines,	it	could	use	even	
less	(two	lines)	by	doing	double	the	amount	of	tuple	assignments:

								x,	y	:=	1,	2

								x,	y	=	y,	x

This	is	extremely	useful	as	it	cuts	downs	lines	of	codes	while	also	giving	easy	readability,	but	it	
isn’t	really	needed	as	it	can	be	achieved,	albeit	longer,	by	creating	another	variable	to	hold	one	
of	the	two	“to	swap”	variable’s	values:

								x	:=	1

								y	:=	2

								z	:=	x


								x	=	y

								y	=	z

However,	tuple	assignments	are	NOT	fully/actually	syntactic	sugar	since	this	“comma	system”	
allows	for	multiple	values	to	be	returned	from	a	function	unlike	other	programming	languages	
who	only	allow	one	return	value	(for	example:	Java).	With	values	affecting	others,	in	some	
instances,	multiple	return	values	may	change	in	value	if	split	into	two	function	that	return	one	
value	each.	For	example	if	we	want	to	find	the	Fibonacci	value	starting	with	a	new	number	(and	
not	1)	while	also	calculating	for	what	nth	place	the	value	is	at,	tuple	assignment	would	make	it	
easier.	Without	tuple	assignment,	we	may	lose	the	actual	value	of	the	nth	number.	For	
instance’s	where	multiple	return	values	can	be	calculated	and	returned,	Go’s	tuple	assignments	
proves	to	be	far	more	useful	than	just	“pretty	packaging”.


The	above	answer	makes	many	good	points	but	misses	that	you	can	return	multiple	values	from	
a	function	in	go	by	returning	a	struct.	This	might	be	wildly	inconvenient,	but	it	is	certainly	
possible.




5.	Byte-compiled	languages	are	languages	that	are	compiled	into	bytecode,	which	is	then	
interpreted	by	a	virtual	machine.	This	allows	byte-compiled	languages	to	be	portable	across	
platforms	because	the	bytecode	can	be	run	on	any	platform	that	has	a	virtual	machine	for	the	
language.	Byte-compiled	languages	also	have	the	advantage	of	being	easier	to	debug	because	
the	bytecode	is	easier	to	understand	than	machine	code.	The	main	disadvantage	of	byte-
compiled	languages	is	that	they	are	usually	slower	than	compiled	languages	because	the	
bytecode	has	to	be	interpreted	by	the	virtual	machine.	
Compiled languages are compiled into machine code, which is then run 
directly by the processor. This allows compiled languages to be very fast 
because the machine code can be run directly by the processor without 
interpretation. They also have the advantage of being more flexible, 
because the source code can be easily modified. The main disadvantage 
of compiled languages is that they are not portable across platforms 
because the machine code can only be run on the platform for which it 
was compiled. 



6: fun:	48	//	the	first	call	to	fun(16)	at	line	22	will	call	the	function	named	fun	declared	at	line	
17,	which	will	activate	the	print	statement	at	line	18,	printing	the	value	of	x	+	a,	which	is	32	+	
16,	because	x	is	defined	in	fun’s	closure	as	32	from	line	16,	and	a	is	defined	as	fun’s	input	
parameter.	
fun: 48 // the call to subFun on line 23 calls fun(16) in the process, on 
line 10 when printing aFun(x), which is fun(x) printing 48 to the screen 
(see prev. For why 48) 

fun: 48 // repeat of last, calls y on line 10, which is stored as aFun(x), 
which calls fun with the value of 16. 

Sub: 112 // the call to subFun will run the function returned from fff. 
This means that running subFun will run the function defined as qq in 
function fff on line 9, which will print the value (“Sub” + (aaa+aFun(x)
+y)), which at this time is defined to be 16+fun(16) +fun(16), which is 
16 + 48 + 48, which is (“Sub: “ + (112)) 

fun: 48 // fun is called a third time with the input 16 on the return 
statement within fff on line 11., see 1, 2, and 3 for why it prints out 48. 

fun: 96 // the value of x changes (within a scope visible to fun) on line 
24, therefore when fun evaluates with an input variable of 32 from line 
25, the print statement on line 18 prints 64 + 32, which is Fun: 96. 

fun: 80 // subFun(32) is called on line 26, which runs fff’s returned 
subfunction qq with the parameter 32. On the print statement in qq, 
aFun(x) evaluates with it’s input variable as 16. When fun gets run, x is 
64 within the closure of fun, because x’s value is changed to 64 in the 
same scope as where fun is defined, meaning it prints out on line 18 the 
value 80. 

Sub: 160 // when subFun(32) is called on line 26, it prints out on line 10 
the value of aa + aFun(x) + y. We established previously aFun(x) is 80. 
Aa is 32, its input from line 26. However-- y’s closure does not include 
the change in variable x to 64 at line 24, because y is not defined within 
the same scope as that variable change. Therefore, y stays as 48. This 
print out 80 + 32 + 48 = 160. 



fun: 80 // When subFun(32) is called, it evaluates aFun(x) again, printing 
x + a = 64 + 16 = 80. 



7
package main

import (
"fmt"
"math/rand"
"time"

)

func makeDeck() []int {
rand.Seed(time.Now().UnixNano())
var a []int
for i:=0; i<10; i++ {

a=append(a, rand.Intn(4)+1)
}
return a

}

func main() {
deck := makeDeck()
fmt.Println(deck)
for i:=0; i<(len(deck)-3); i++ {

if deck[i]==deck[i+3] {
deck = append(deck[0:i+1], deck[i+3:]...)
fmt.Printf("Compressing %v : %v\n", i, deck)
i--

}
}
fmt.Println(deck)

}%



8. If	this	were	true,	functions	could	be	used	to	make	the	code	look	neater	to	the	programmer	
and	abstract	sections	of	code.	However,	if	I	am	understanding	this	correctly,	if	a	function	has	a	
single	static	location	in	the	compiled	representation	of	the	program,	it	can	only	be	called	for	as	
many	times	as	is	predicted	and	preallocated	at	compile	time.	For	example,	recursion	would	not	
be	possible,	as	it	relies	on	the	ability	to	add	functions	to	the	stack	and	then	trace	the	functions	
called	before	as	they	are	returned.	


