
Programming Languages
CS245

Things to Know

• Textbook

• Programming Language Pragmatics, v4

• by M Scott

• 17 chapters, 9 covered and not all of those

• Also

• The Go Programming Language

• Donovan & Kernighan

• The Rust Programing Language

• Klabnik & Nichols

Programming Languages

• Why?

• because it is required for the
major

• Why is it required?

• if a PL is “Turing Complete” it
does not matter what language
you use. All modern PLs are.

• Grace Hopper — if you
program in a better language
you can be more efficient

https://www.interviewkickstart.com/blog/hardest-and-easiest-programming-languages-to-learn

Class WebSite

• Will have all homework, important dates, etc

• Lecture notes — I will post PDF “notes”. Literally my notes to myself.
• This will likely be the only powerpoint for the class

• Tests — 2 midterms and a final. All will be open book, open notes, open computer, closed mouth.
• midterms will be “take where you want, but on a given date”
• final — similar idea.

• Homeworks — approximately 6 through the semester

• Lab — The first few will be formally in lab room. These will be graded on a “did you hand in something that is at least semi-correct”.

• Class participation -- will be assessed on a "readiness to participate" rather than actual participation. Readiness will be assessed with occasional 5 minute
quizzes at start of class.

https://cs.brynmawr.edu/cs245

https://cs.brynmawr.edu/cs245

Lab

• Both this week and next week.

• If you have timing issues, not a problem to arrive late.

• Formally, labs are not due until midnight of the lab date.

• Think of lab as

• an office hour in which I am sitting in 231

• I have given you a task and you should work on that task for 80 minutes

Goals

• Learn questions to ask, and how to evaluate answers, for choosing language
appropriate to problem

• Improve ability to learn new programing languages

• In my career: Basic, PL/1, Pascal, (rascal, spss, sas), C, Lisp, Prolog, Visual-C, Perl,
Python, Visual-Basic, Java, SQL, Objective-C, PHP, Javascript, Kotlin, Go, Elixir,
Swift, Rust (and probably a dozen others)

• Increase ways in which you can express and implement programs

• Understand why and wherefore of “obscure” language features

• First Generation

• Machine language -- literally working with 0 and 1

• Second Generation

• Assembly language -- write commands that are directly supported by CPU

• Third Generation

• Most PLs that you will ever work with: C, Java, ...

• Fourth Generation

• Giving instructions to VM that specify what, not how: SQL, R(?)

• Fifth Generation

• AI stuff: Prolog, Lisp(?)

https://github.com/stereobooster/programming-languages-genealogical-tree

A Really Brief Genealogy of PLs

First
Compiler/
Interpreter

Language Lead Designer Progeny

1952 A-0 Hopper FLOW-MATIC

1955 FLOW-
MATIC Hopper COBOL

1957 Fortran Backus ALGOL (Fortran influences, directly or indirectly, every other language on this page
excepting Lisp, COBOL and APL)

1958 ALGOL committee BCPL, Pascal

1958 Lisp McCarthy Scheme, all functional languages, Ruby

1959 COBOL Hopper +
committee

1964 APL Iverson (small family of descendants)

1964 BASIC Kemeny / Kurtz Apple and Microsoft Basics, scripting language in MS Office, Lotus Notes and many others

1964 PL/I IBM

1966 BCPL Richard B

1967 Perl Wall influences many, Ruby

1969 B Thompson C

1970 Pascal Wirth Modula-2

1972 C Ritchie C++, JavaScript (and most later languages), Go

1972 Smalltalk Kay, Ingalls,
Goldberg C++, JavaScript (via Self), all object languages

1975 Scheme Steele and
Sussman JavaScript, all functional languages

1978 Modula-2 Wirth Modula-3

1983 C++ Stroustrup Java (and numerous others)

1987 Self Ungar, Smith JavaScript

1989? Modula-3 committee Java, Python

1991 Python van Rossum Ruby

1995 Java Gosling (most later languages)

1995
JavaScript
(neé
Mocha)

Eich

1995 PHP Lerdorf

1995 Ruby Matsumoto elixir

http://www.martinrinehart.com/pages/genealogy-programming-languages.html

Java

• Plusses

• large, well-organized libraries

• clean, consistent syntax

• Easily available instructional support

• Widely used

• Minuses

• OO is big hurdle — have to “talk around it”

• Comically wordy

Why is Java the first language taught at BM

Church Turing Thesis

• any function whose values can be computed by an algorithm can be computed by a
Turing machine, and therefore that if any real-world computer can simulate a
Turing machine, it is Turing equivalent to a Turing machine

C, Oberon-2, Limbo, Active Oberon, communicating
sequential processes, Pascal, Oberon, Smalltalk, Newsqueak,
Modula-2, Alef, APL, BCPL, Modula, occam

improve programming productivity in an era of multicore,
networked machines and large codebases.[20] The designers
wanted to address criticism of other languages in use at Google,
but keep their useful characteristics:[21]

• Static typing and run-time efficiency (like C)
• Readability and usability (like Python or JavaScript)[22]

• High-performance networking and multiprocessing
Its designers were primarily motivated by their shared dislike of
C++

Alef, C#, C++, Cyclone, Elm[5],
Erlang, Haskell, Limbo, Newsqueak,
OCaml, Ruby, Scheme, Standard ML,
Swift

Rust is a multi-paradigm, general-purpose programming language that
emphasizes performance, type safety, and concurrency. It enforces
memory safety—ensuring that all references point to valid memory—
without requiring the use of a garbage collector or reference counting
present in other memory-safe languages. To simultaneously enforce
memory safety and prevent concurrent data races, its "borrow checker"
tracks the object lifetime of all references in a program during
compilation. Rust borrows ideas from functional programming,
including static types, immutability, higher-order functions, and
algebraic data types. It is popularized for systems programming

https://en.wikipedia.org/wiki/Rust_(programming_language) https://en.wikipedia.org/wiki/Go_(programming_language)

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Oberon-2
https://en.wikipedia.org/wiki/Limbo_(programming_language)
https://en.wikipedia.org/wiki/Active_Oberon
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Oberon_(programming_language)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Newsqueak
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Alef_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/Modula
https://en.wikipedia.org/wiki/Occam_(programming_language)
https://en.wikipedia.org/wiki/Programming_productivity
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Codebase
https://en.wikipedia.org/wiki/Go_(programming_language)#cite_note-21
https://en.wikipedia.org/wiki/Go_(programming_language)#cite_note-22
https://en.wikipedia.org/wiki/Static_typing
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Usability
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Go_(programming_language)#cite_note-23
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Criticism_of_C%2B%2B
https://en.wikipedia.org/wiki/Criticism_of_C%2B%2B

Bruce Eckel -- a founding member of the ANSI/ISO C++ standard committee

The complexity of C++ (even more complexity has been added in the new C++),
and the resulting impact on productivity, is no longer justified. All the hoops that the
C++ programmer had to jump through in order to use a C-compatible language
make no sense anymore -- they're just a waste of time and effort. Go makes much more sense for the class of problems that C++ was originally intended to solve.

Why not

https://en.wikipedia.org/wiki/ANSI
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/ISO/IEC_14882
https://en.wikipedia.org/wiki/C%2B%2B

Hello World

//GO

package main
func main() {
 println("hello geoff!");
}

go run hw.go

OR

go build hw.go
hw

// Rust

fn main() {
 println!("Hello, world!");
}

rustc hw.rs
hw

OR

cargo run // assuming cargo is being used

http://hw.rs

For next class

• If you could be a programming language, which one would you be

• Why?

• Why is that language so named?

• Do not use: Java, C, Python, Fortran, Cobol, Javascript, Rust, Go.

• Read

• Scott 1.1-1.4

• This Weekend -- Watch (at least the first 30 minutes)

• "The worst programming language ever"

• https://www.youtube.com/watch?v=vcFBwt1nu2U

• On Tues Sep 12 -- one statement that you did not understand or thought was really funny

https://www.youtube.com/watch?v=vcFBwt1nu2U

Functional and Imperative programming

• Imperative
• programming by side effect

• procedures that return nothing (in Java void)
• lots of variables whose values are set and change frequently

• Functional
• No variables

• there are things that look like variables but they are better though of as constants
• What is the difference between a variable and a constant whose value you can change?

• Functions always return values, it is why they are executed
• Functions are only dependent on their arguments

• Programs can be provably correct (usually of academic interest only)

