
Topic 8: Types

Ch 7 Scott

2 basic questions : what / why

What??

	 bits are untyped!!!

	 most basic: a type defines how many, and how, to interpret bits. Similarly, in any
language, if a string is a “basic” type, how because you do not know its size

	 also—the set of operations that are allowed it.

	 	 primitive types “built in” — usually at hardware level

	 	 	 different from Java int, …

	 	 composite types

Why?:

1. Types supply context — Useful for compiler as it specified what to do

2. Limit what is allowed to be done

3. Make the program more readable to user — effectively a form of documentation —

especially useful when there are a lot of types (OO langs). So why type inference (as in Go/
Rust this seems to defeat self documenting)?

4. Compile time optimization

Most of these are arguments in favor of static types, What about languages (python) with
dynamic types point 2 is still valid.

Type system:

	 1. mechanism to define types

	 2. Definition of

	 	 type equivalence

	 	 	 structural vs name

	 	 type compatibility

	 	 	 what is allowed with what

	 	 	 for + suppose one is Int, what is the other allowed to be

	 	 	 	 in a weakly typed anything

	 	 	 	 Go, Java, Rust

	 	 type inference (may not be available in some langs)

	 Terms

	 	 static vs dynamic type

	 	 	 Python is dynamically typed.

	 	 	 is Javascript???

	 	 strongly typed

	 	 	 See below

So what is type in python?????

“Python’s dynamic typing is closely related to the concept of duck typing. Duck typing
emphasizes an object’s behavior over its class or type. In other words, the suitability of an
object for a particular operation is determined by whether it supports the required methods or
attributes, rather than checking its explicit type.”

https://medium.com/@mycodingmantras/understanding-the-dynamic-typing-nature-of-python-
a-comprehensive-guide-8f825fda0d01

Python	—	it	seems	as	if	variables	don't	have	types:

Page of 1 8

https://medium.com/@mycodingmantras/understanding-the-dynamic-typing-nature-of-python-a-comprehensive-guide-8f825fda0d01
https://medium.com/@mycodingmantras/understanding-the-dynamic-typing-nature-of-python-a-comprehensive-guide-8f825fda0d01

a=1

a="1"

however,	internally	a	has	a	type	-	it	is	PyObject*	and	this	reference	can	be	bound	to	an	integer	(1)	and	to	
an	unicode-string	("1")	-	because	they	both	"inherit"	from	PyObject.	(As	in	java,	each	object	knows	what	
it	was	created	as.)

So	the	interpreter	infers	the	types	during	the	run-time,	but	most	of	the	time	it	doesn't	have	to	do	it	-	the	
goal	can	be	reached	via	dynamic	dispatch.

“primitive types” vs composite types

	 composites in next chapter

	 	 struct, array, set, pointers, list, file

	 Primitive — int (at what precision?) should a lang care about precision?

	 	 character? ASCII, 16-bit ascii? rune? UTF-8

	 enums — primitive or composite.

	 	 lets say they are primitive but come back to in a few minutes

Do functions have types?

	 Why?

	 If they are first or second class, they do / must

	 What is the type of function??

	 	 Go:

	 	 	 type af func(a int) int

	 	 	 func(incr int) int { return aa + inc }

	 	 Rust

	 	 	 much the same as Go

Java— function type is its name and all of the types of its arguments

	 	 	 do we even need to talk about function types in Java?? if not, why?

Strongly typed — language prohibits even trying to do something that is not allowed for a type.
Thrown out at compile

Weak—usually implies doing more work at run time — strong==fast

	 for instance, to make the “+” work, javascript must do what?

	 	 can interpreted language be strongly typed?

	 realistically this is a spectrum. Language may have holes …

	 weakly typed —ex language allows application of operators when it does not make
necessarily make sense. For instance, javascript is weakly typed (and dynamically typed)

	 	 f = some function

	 	 q = 5 + f

	 	 	 Go? Rust?

	 	 how does type coercion factor in here??

	 	 	 does type coercion make language weakly typed??

	 	 	 java has coercion — rust and go do not … why not?

	

Statically typed — strong AND type checking is a compile time.

Lots of types

Basic type: integer, float …

Page of 2 8

	 Intergers

	 	 Java: byte, short, int, long. Also, Byte, Short, Integer, Long, BigInteger!!!

	 	 Rust [u,i][8,16,32,64,128,size]	

	 	 Go: [u[int[8,16,32,64]

	 	 Why so many int types???

	 Floating point: similar

	 	 go and rust f32, f64,

	 char — what is a char?

	 	 one byte — ASCII

	 	 	 char in c

	 	 2 bytes — UNICODE16 — JAVA

	 	 	 char in Java

	 	 rust “The char type represents a single character. More specifically, since
‘character’ isn’t a well-defined concept in Unicode, char is a ‘Unicode scalar value’. … USVs
are also the exact set of values that may be encoded in UTF-8. All USVs are valid char values,
but not all of them represent a real character. Many USVs are not currently assigned to a
character, “ from the rust book

	 Go does not actually have a char type it has a “rune”

	 	 WHAT IS A RUNE IN GO?

	 	 Up to 4 bytes — UTF8 —- variable

	 	 	 0xxxxxxx — 1 byte — plain old ASCII

	 	 	 110xxxxx 10xxxxxx —-

	 	 	 1110xxxx 10xxxxxx 10xxxxxx

	 	 	 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

	 	

	 	

	 is String a basic type?

	 	 in Java? C? Go?

	 	 	 Java — NO..it is a class

	 	 	 	 (Are classes in java.lang really “basic” to Java??

	 	 	 	 You cannot do ANYTHING without java.lang.Object

	 	 	 	 To know would have to look at implementation of String class

	 	 	 C — definitely NOT

	 	 	 Go — from book “a string contains an array of bytes that, once created,
is immutable”

	 	 	 	 This indicates that string is a composite type, maybe

	 	 	 	 Going further Go explicitly mirrors string functions with byte array
functions

	 	 	 	 OTOH — “The underling type of every constant is a basic type”
boolean, string or number”

	 	 	 Rust —

	 	 	 	 “String literal”? &str

	 	 	 	 String — NO — the rust book says it is really a vector

	

	 Enumerated types

	 	 What: a type that has a specific, finite (usually small), and bounded set of
possible values.

	 	 Why????

	 	 How is this encoded by the language …

	 	 consecutive integers? Powers of two?

Page of 3 8

	 	 see enum_java/GTEnum.java
Why?

	 	 Go: enum_go/enum.go
	 	 	 They do not really exist like in other languages so you get little benefit

	 	 	 an they are certainly not primitive

	 	 Java: enum_java/GTEnum.java

Rust: enum_rust/src/main.rc

	 Type checking

	 	 Java: obvious and handled by compiler

	 	 Go: often do not require explicit types (type inference)

	 	 	 type inference

	 	 	 	 why have type inference?

	 	 	 	 	 you loose the readability of the implicit documentation

	 	 	 	 	 what do you gain?

—————————————- Finish here Nov 7 ———————————————-

When are two types the same???

	 	 structural vs name equivalence

	 	 	 structural

	 	 	 	 same order, or just same number and kind?

	 	 	 	 what work needs to be done to get this?

	 	 	 	 what does Go/Elixir do?

	 	 	 	 	 why not use structural equivalence?

	 	 	 name

	 	 	 	 what about type aliases?

	 	 	

	 	 what are Go, Java

	 	 Go: equiv_go/equiv.go
	 	 	 strict name equivalence

NOTE: structural equivalence is about does the question of equality even make sense?
Should the question even be allowed?

	 	 Java: no typealias (quite) equiv_java/Equiv.java
	 	 	 you can define a class that extends another class without addition

	 	 	 Why would you??

	 	 	 	 limitation — class cannot be final (e.g. String is final, why?) what
is final with respect to classes in Java?

	 	 	 	 Also this does not really get you equivalence

	 	 Rust —

	 	 	 has type aliasing but the aliases seems to be taken out at compile
time??

	 	 	 are structs a type??

	 	 	 effectively yes.

Page of 4 8

Strongly vs Weakly typed languages

Strong typing: A programming language is strongly typed if its type system allows all type errors
in programs to be detected, either at compile time or at run time, before the statement in which
they can occur is actually executed. Accept only safe expressions (guaranteed to evaluate without
a type error)
Weak typing: The language allows automatic type conversions with the proviso that there may be
some loss of information.

	 “how much type consistency is enforced

	 strong = guarantee program is type safe

	 weak = legal program may contain type errors

	 Strong vs weak is a run-time concept and it is a spectrum

	 	 java rust and go are all very strongly typed

	 	 (C the least so)

	 	 curiously most people have python as being fairly strongly typed

	 Contrast with static vs dynamic type which is about when a decision about type is
made.

image strong vs weak on Y axis, static vs dynamic on X axis

	 Python in strong/dynamic

	 	 Python is strongly typed because the interpreter keeps track of all variable
types. (Everything is a PyObject, but that pyObject knows what the things was created as)

	 java,go,rust in strong, static

	 javascript in weak,dynamic

	 c in weak, static (or strong static) depends on who you ask and what they care about. In
particular C weakness comes from “non converting” casts.

This spectrum is an intro to casting and “non-converting casts”

Casting — converting from one type to another

	 in strongly typed languages “weird” casts are not allowed

GO: casts_go/casts.go
func t5() {

 str := "abc"

 fmt.Println(str)

 var num int64

 num=40

 fmt.Println(num)

 num = int64(str) // Compiler flags as not allowed

}

	 Problem is that casting requires changing bits and you have to know how.

	 	 what is the problem with changing bits??? time!

	 Some langs allow “non-converting” casts. That is, do not change bits just interpret
bits differently. What is problem? (C does this. Why?) nonconvert_c/pun.c
rust can do it nonconvert_rust/src/main.rs

	 	 Go: pun_go/pun.go

uses a package named “unsafe”

Question — can you do this in Java?? Why/why not??

	

Page of 5 8

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language

	 type coercion

	 	 implicit casting????

	 	 allow 3+2.4 without explicit casing

	 	 	 pros/cons

	 	 Go — no coercion

	 	 Java — happy to coerce among numeric types

	 	 Javascript— (weak) happy to coerce pretty much anything

	 	 	 	 — “JAVASCRIPT WANTS THINGS TO BE TRUE”

	 	 	 	 == vs === in javascript

———————————- Stop here on 11/9 ————————————————-

Object equality (sec 7.4)

	 	 deep vs shallow equality

	 	 deep vs shallow assignment

	 	 in ref-model and value model languages

	 	 why in Go if == defined over array but not slice

	 	 “deep assignment”

When are two objects the same?

	 Deep vs shallow checks?

	 	 Java == vs equals

	 	 	 Deep vs shallow assignment

	 	 Only applied to reference model languages

	 	 	 see copy_go
	 	 Value languages effectively always deep copy

	 	 Shallow

	 	 	 copy and assign pointer (SCopy.java)

	 	 	 make a new copy of object and assign.

Generics

	 they are much more complex that you thought (and you probably thought they were
pretty complex)

	 Java “Generic Gotchas”

	 	 See the web article

Covariance & Generics:

	 For example

	 	 Integer extends Number — True

	 	 By Covariance Integer[] extends Number[]

	 	 Hence this is legal:

	 	 	 Number[] nArray = new Number[10];

	 	 	 Integer[] iArray = nArray;

	 	 	 	 can put integers into iArray and it is guaranteed to be fine with

nArray

	 	 	 See ArrayCov_java
	 	 	 	 point when passing into methods covariant type inherit just like
their base types. But this can cause issues at run time.

	 generics are NOT covariant It would break type saftey

Page of 6 8

	 For instance consider ArrayList

	 	 ArrayList<Integer> ai = new ArrayList<>();

	 	 ArrayList<Number> an = ai; // WILL NOT COMPILE

	 	 ln.add(Double.doubleValue(2.2));

	 See also Cov1_java

	 	 (note arrays actually have the same issue)

	 Generics with wildcards

	 	 see covar_java

	 	 see Wildcard_java

	 	 ArrayList<? extends Number>

	 	 ArrayList<?>

	 	 ArrayList<*>

	 	 Wildcards can be handy

	 	 	 limit a function to taking an array list that contains anything that extends
number (you need it here because generics are NOT covariant)

	 	 But wildcards result in other issues, specifically immutability.

	 	 	 See Immut_java

	 Type erasure in Java

	 	 generics are known only by compiler, they are “erased” after compile so all of
that info is gone at runtime.

	 	 	 see Erasure_java
	 	 EG

	 	 	 ArrayList<String> ss = new ArrayList<>();

	 	 	 eventually gets translated to

	 	 	 ArrayList ss = new ArrayList();

	 	 So at run time, anything that the compiler let pass is OK. It could cause runtime
issues.

	 	 Erasure also causes things that might see legal to NOT be legal. For instance

	 	 public class JavascriptNumber implements Comparable<String>,
Comparable<Number> { …}

	 	 does not work because compiler reduces this to

	 	 public class JavascriptNumber implements Comparable, Comparable { …}

	 	

Generics in Go

	 	 See GoGen1 for basics

	 	 NO erasure in Go … see GoGen2

	 	 Any — kind of like Object in Java. More like ?

	 	 LinkedList is a good example, but not until next chapter!

Object equality (sec 7.4)

	 	 deep vs shallow equality

	 	 deep vs shallow assignment

	 	 in ref-model and value model languages

	 	 why in Go if == defined over array but not slice

	 	 “deep assignment”

When are two objects the same?

	 Deep vs shallow checks?

	 	 Java == vs equals

	 	 	 Deep vs shallow assignment

	 	 Only applied to reference model languages

Page of 7 8

	 	 	 see copy_go
	 	 Value languages effectively always deep copy

	 	 Shallow

	 	 	 copy and assign pointer (SCopy.java)

	 	 	 make a new copy of object and assign.

	 	

Page of 8 8

