
Topic 10

Subroutines

Ch 9 in Scott

	 return value — function

	 no return — procedure

	 associated with structure/class — method (regardless of return)

Skip 9.1 & 9.2 Mostly.

Quickly, What happens when you make a subroutine call

	 1. Compute (as needed) value of arguments to called subroutine

	 1a. Hold onto the “dynamic link” ie the place where the program execution returns to
when function completes

	 2. if a nested subroutine — the “static link” ie what variables are available to nested sub
from its surrounding subroutine

	 	 see funinfun_go/ff.go

Java does not support nested subroutines. But you can make an instance of a
class with a function defined at that time!

public class Nested {

 private abstract class Aa {

 public abstract void printer();

 }

 public void outer(int zz) {

 int bb = zz * zz;

 Aa aA = new Aa() {

 public void printer() {

 System.out.println(bb);

 }

 };

 aA.printer();

 bb *= bb;

 aA.printer();

 }

}

This does not compile!!! Problem is with the line “bb *= bb”. Comment is the bb must be final,
or effectively final. Discuss

	 see

	 	 how is static link distinct from closure? Closures are about functions that are
defined, but then executed later. Static link is about functions executed now. So they refer to
largely the same thing; but with different uses. Also closures can get outside the function in
which they were defined.

the callee — on starting:

	 3. Pass return location of the calling function

	 4. Add all of this to the “call stack”

	

Parameter passing: (sec 9.3)

	 Define

	 	 / reference param — a param that is a pointer

	 	 \ value param — a param that is a value

	 	 / formal param — the thing in the function definition

	 	 \ actual param — the value in the function call

	 Two basics

1

	 	 pass by value

	 	 pass by reference

	 	 	 These generally make the most sense in discussion of value-model
languages because they determine what gets sent in a function call.

	 	 call by sharing

	 	 	 applies to a reference model language, essentially “share” the reference
with the called function.

	 	 Java — primitive types == pass by value

	 	 	 classes == sharing

	 	 Go — 	values — pass by value

	 	 	 pointers — pass by value

	 	 	 	 	 Can change the thing pointed to but if try to change the
passed pointer, that change does not survive!

	 	 	 	 	 	 So the pointer itself is passed by value!!

	 	 	 	 see passpoint_go/
	 	 Rust

	 	 	 pass ownership except

	 	 	 	 1. item implements the “copy trait”

	 	 	 	 2. reference — NON mut see passref_rust —
rec_refr_mut_value

	 	 	 	 3. Reference — mut see passref_rust —
rec_refr_mut_reference

	 	 	 	 4. Reference to struct — if try to replace reference with struct
created in the method “// compile error : `bb` does not live long enough

 // `bb` dropped here while still borrowed

“ WHAT????

fn rec_refr_mut_reference_s(mut aa : &aa) {

 println!("Before int {:?}", aa);

 let mut bb = aa{aval:42}; //not allowed when behind a &

 aa = &bb; // compile error : `bb` does not live long enough

 // `bb` dropped here while still borrowed

 //aa = &12; // cannot mutate aa

 println!("After int {:?}", aa);

}

	 problem is that the struct is allocated from the stack and thus when the function ends,
the struct goes away. As a result the pointer would become null. But Rust hates this and will
not allow (by default). Leads to one of the truly unique things in rust, reasoning about object
lifetimes. We will NOT discuss this further — one of the things this does is get out of this trap

Why doesn’t Go have this issue?? Structs are allocated from the heap!!!!

	 	 Java — “call by sharing”

	 	 	 see passref_java/PassRef.java
	 	 	 Note that in Java, when you cannot change the location of the pointer,
you can change what is inside

	 When pass (or share) a reference

	 	 effectively allows function to return multiple values

	 	 	 mret_go/mreg.go
	 	 	 	 Why bother?

	 	 	 	 PbV on large objects can be expensive

2

	 Read-only parameters

	 	 Java formal parameter marked as final

	 	 	 covariance

	 	 Go No

	 	 	 Are read-only params needed?

Closures — again

	 when functions are passed in Go they are passed with their closure (if closure exists)
(when will it not?)

	 Question what happens when change values in closure AFTER function

	 Java — functions are NOT first class so cannot be passed so closures are not a thing

	 	 Instead “Object closures”. Idea, define an object with method and vars. Then
pass the objects. The receiver knows to use the method defined within the object. This is
used a lot in Android to get “callbacks” and more generally in multithreadedprograms.

	 	 Illustrative example of callback?

	 	 For instance, downloading stuff from web. By rule in Android, this must be done
in a separate thread. When download complete, want to notify the “main thread” and have it
put up a “complete/fail” message. So, pass in an instance of something like

	 Will come back to this

Rust closures: move and FnMut

	 Closures and mutables functions.

	 Closures can be passed from a function to another function

	 	 see move_rust/src/main.rs

	 But closures cannot be returned! WHY? Rust can not deal with extent! (if nothng else,
violates ownership). Also, for vars allocated on the stack, rust requires them to die with their
stack frame.

	 To return use “move” which causes the function to take ownership of the vars. Thus
games with vars and closures that are possible in Go cannot happen in rust. (EG, cannot
change var in returning func after the func is created.)

	

Optional parameters

	 “Go has no concept of default parameters nor any way to specify arguments by name”

Nor does Java … exactly

	 	 Why not?

	 Go does not allow overloading of function names

	 	 Why Not?

FROM GO DOCUMENTATION

Why does Go not support overloading of methods and operators?
Method dispatch is simplified if it doesn't need to do type matching as well. Experience with other
languages told us that having a variety of methods with the same name but different signatures was
occasionally useful but that it could also be confusing and fragile in practice. Matching only by name and
requiring consistency in the types was a major simplifying decision in Go's type system.
Regarding operator overloading, it seems more a convenience than an absolute requirement. Again, things
are simpler without it.

	 Many languages allow both named parameters and overloading.

	 	 Do you really need both?

	 	 Java overloading only

	 Variable number of args

	 	 Go — YES

3

http://main.rs

	 	 	 the print statement

	 	 	 see also variadic_go
	 	 	 	 clever user of functions — but is this clearer??

	 Rust???

	 	 no overloading

	 	 “Generics and function overloading don’t play along well.” ????	

	 	 fn does not do variadic, macros do	 	 	 	

Function returns

	 1. Should functions allow return statement other than at the end?

	 Go: multiple return values; see return_go

	 RUST: sure, through tuple creation and unpacking, You do not really need to know that
the tuple ever existed.

	 Go: named return values; see return_go

	 	 are these good?

	 Rust: only in macros

	 Java: not at all

	 	 	

Exceptions:

Text — exception Handling

	 3 methods of dealing with exceptions without explicit exception handling mechanism

	 	 1. Return one value with special values indicating that things went wrong. For
instance, if function is supposed to return a positive integer, return -1 to indicate an error

	 	 2. Return a status in addition to value (in a multiple return language). The is the
general approach taken by Go, with the Panic as a bonus

	 	 3. Caller returns a closure containing an error handling function. (or null if no
error.) This is kind of Java — Object Closures!!!

	 see ObjClo_java/ObjClo.java

	 From booK: 1 is difficult to generalize, 2 and 3 can introduce new errors and
obfuscatory ..

	 	 	 	 https://radio-weblogs.com/0122027/stories/2003/04/01/
JavasCheckedExceptionsWereAMistake.html

	 Handling in Go

	 	 basic approach, lots of functions return two values

	 	 	 desired value, error

	 	 	 see basicexcep_go/basicexcept.go
	 	 when normal, err value is 0 (nil).

	 	 when problem, normal value is 0 (possibly) and error value is non-0

	 	 So, how does func set that non-nil error?

	 	 	 1. error prevention — do not just open a file and try to read, then get
exception when file does not exist. First check that file exists. Yes, programmer has to do this.

	 	 	 2. PANIC. panics are the equivalent of a thrown exception in Java

	 	 	 	 if not “caught”, program dies. BUT catch without try catch???

	 	 Note: “giving up is usually the right response to a panic, but not always”

	 More generally, problems. Answer, catch with a function that is guaranteed to run at the
end of a function kind of like try {} finally{} in Java

4

https://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html

	 in Go “defer” == run just before function completes.

	 	 So defer is part of the language

	 	 inside deferred function call “recover()”. If execute while NOT in panic, return
null. if return NOT null, then panicing!!!

	 So, how do you get a func to return an error value is the only way to catch the error val
is done by a function that must run as the last thing in a function??? A By having the actual
work done in an inner function!! see except_go/except1.go .. basicPanic()
 except_go/except1.go .. betterPanic()
	 OR

	 use go named return values and set the value of the named returns inside the deferred
fun see except1/betterPanic2()
	 	 This use case may be logic behind named returns

So why does Go take option 2?

	 it does not/ fully. It also kind of does option 3 —

	 Programmer should do stuff to prevent problems. If unable to prevent, only then,
maybe, panic and die.

	 Problems with catching exceptions someplace other than the func in which they
occurred — need to unwind the stack!!!!

3 goals of exception handlers:

	 A. compensate for exception to allow program to recover

	 B. Clean up and re-thow so someone else can hanlde

	 C. Print an error message.

Events

	 also “event-driven programming”

	 Point — the program might be doing other things, it is NOT just waiting on the event

	 events are “something to which a running program needs to responds, but which
occurs outside the program, at an unpredictable time.”

	 	 GUI input

	 	 Network events (read URL)

	 Synchronous handlers

	 	 program is single threaded, event interrupts whatever the program had been
doing; does its work, then is gone. Can be handled kind of like any subroutine call.

	 Threaded Handlers

	 	 most modern programming languages (except Javascript!!!!)

	 	 	 Problem, how to handle data structure use clashes between threads.

	 	 	 	 Java synchronized. ArrayList vs Vector. All the methods of
Vector is synchronized. But, the methods of ArrayList is not synchronized.

	 	 	 	 rewrite this in Java??

For example

	 events_java/SD.java
	 	 Java GUI Idea is that we have a background thing that is listening for “events”
and the program tells the background thing what events it is interested in. In this case 2 events

	 	 button push

	 	 window close

	 	 	 handling is much like the Object closure That is, define an instance of a
class with a customized function

5

	 events_java/GTReder.java
Here we have our own event and handler Idea is that we want to read from the

internet. But we want to keep doing stuff. So do the read in a separate thread. When complete,
tell the main thread that reading is complete.

6

