
Topic 12

Concurrency

CH 13 Scott

	 skip: 13.1.2, 13.2.3 (except fork/join and Box 13.3) 13.3 except 13.3.5, 13.4.1, 13.4.2,
13.4.4, 13.4.5

Why?

	 Problem has a logically parallel structure

	 	 characters in a video game

	 Exploit machine capabilities

	 	 SPEED!

	 Physical distribution

	 	 the internet, some things arrive very slowly

Parallel and the web

	 see firefox developer tools / network (rightmost column)

	 imagine if all of the images were retrieved serially

problem: you started a bunch of threads, how do you know when they are done???

And how do you even start the treads in the first place???

Rust:

see wait_rust/h[1,2,3].rs
Go:
 wait_go/h3.go
Java

wait_java/H3.java

	 Concurrent == 2 or more task may be active at any time (not that active does not imply
actually doing anything. So you can have concurrent processing of threads on a single
processor machine.

	 Parallel == more than one task can be running. So all parallel are concurrent. Ti get
parallel need more than one processor.

Parallel Level

	 Instruction level — in the core recognizing that instructions take different route through
memory (no need to anything at the application level.)

	 Vector — operations repeatedly on every element of a dataset (GPUs) The classic
example of this form is weather forecasting … and various graphics operations. GPUs are
essentially vector parallel devices.

	 Thread — do different things on different data through (possibly) different processors

Thread == every concurrent activity. So how many threads are running on computer??

	 == “active entity that the programmer thinks of as running concurrently with other
threads”

	 UNIX: “ps -e | wc” is a good start. But that undercounts as these are processes. Many
processes are multi-threaded. So need to get information on a thread basis

 of 1 6

	 -e == every

ps -eL | wc

-L == show threads

heavyweight process == own address space (a unix process?)

lightweight process == groups share address space

‘lightweight processes were added to Unix to accommodate shared-memory multiprocessors”

“One of the major characteristics of shared memory multiprocessors is that all processors have
equally direct access to one large memory address space.”

“In systems with no shared memory, each CPU must have its own copy

of the operating system, and processes can only communicate through message passing.”

======================= Stopped Here on 12/5 =============================

Communication and Synchronization

	 comm == “any method that allows one thread to obtain information from another
thread”

	 	 	 shared memory — some or all memory os accessible to threads

	 	 	 message passing — (pure) no shared memory “send” and receive

	 	 Java — shared and can do message passing (https://www.coderscampus.com/
java-multithreading-java-util-concurrent/) but it really often ends up looking like shared memory

	 	 Go — shared and message passing

	 	 Rust — both BUT strong preference to message passing

A basic syncro problem is referred to as a “race” condition.

“race condition” Consider the code below

Assume that a is a common object share by the threads. Then, these two threads are in a race
in that if thread 1 finishes first then the value of a will be 1 for a while then 2. OTOH, if thread 2
finishes first …

So in this case need a way of “synchronize” the threads in order to get a deterministic result.
One of the principle things that a PL offers for parallel programming is synchronization tools.

All shared memory systems have to deal with handling of the shared resource.

For example, counter as in counter_go/counter.go

	 	

	 Go counter_go/counter.go // discussed this on 12/5
	 	 	 same issue, big undercount

	 Java counter_java/BCounter.java
	 	 	 massive undercounting

//Thread One

do something that takes a while

set a=1

// Thread 2

do something that takes a while

set a=2

 of 2 6

https://www.coderscampus.com/java-multithreading-java-util-concurrent/
https://www.coderscampus.com/java-multithreading-java-util-concurrent/

	 Java & Go have at least 3 different approaches will discuss 2. Choice of which is
stylistic and situational

	 	 ReentrantLock — much like a semaphor

	 	 Atomic — a datatype with its own lock.

	 	 	 atomic == inseparable. imagine everything happens at same time

	 	 	 see counter_go/atomiccounter.go, // discussed this on 12/5

	 	 	 counter_go/atomiccounterB.go,

	 Mutex locks

	 	 “mutex” == “MUTual EXclusion”

	 	 	 idea is that a thread locks a door. Until that thread unlocks the door, no
other thread can get in. So whenever you lock, you need to be really sure to unlock.

 	 	 counter_go/lockcounter.go // here make point of using defer in a
function every time you unlock a lock so you guarantee unlock.

Synchronized — much line monitor

	 	 	 see counter_java/ExecCounter.java

	 Java: label a whole function as “synchronized” then only one thread can do anything
with it. Vector and Hashtable are synchronized but this is really done by making every writing
method synchronized. Is it sufficient to have each method simply labeled “synchronized”?

	 	 Rust — ownership model makes shared memory hard … Had to add things to
language .. we will not discuss. You can get it, but you really have to try

Message Passing

	 There is no shared memory!!! so no sync problems

	 Advantages? naturally applies to distributed systems

	 Disadvantages?? speed

Need to add discussion of message passing and its implementation in Rust.

mpsc == “multiple produce — single consumer” That is, many threads are allowed to send
messages, but only one thread is allowed to read them

See the sequence of main functions in messages_rust/src/main.rs

 	 main_1_1 send a message

 	 main_1_10 send at least 10 messages

 	 main_10_10 send at least 10 messages from 10 threads to main

	 main_2d receive some number of messages from threads, then tell each thread to go
away.

	 synch mechanisms

	 	 busy-wait /spinning

	 	 	 while (1)

	 	 	 	 sleep(100)

	 	 	 	 check if there is something to do

 of 3 6

http://main.rs

	 	 blocking — idea give control to another thread and leave a note somewhere
saying you are blocked; In the future, another thread sees the note and unblocks

	 	 Alternate: in one thread: in a section of code, put up a block. Run code.
Unblock.

	 	 in Java definitely want to unblock in a try/finally. In Go, put unblock in a defer.

	 	

Parallelism and Event-driven programming

Instead of parallel programming could achieve some of the same effect through a “dispatch
loop” And this is basically what you have to do when using Javascript (and effectively when
doing event driven programming).

Dispatch loop and Javascript

	 JS is single threaded. But it can send stuff off to things outside the language, and do
other things while those dispatched items are being processed. …. “in effect the dispatch loop
turns the program inside out, making the management of tasks explicit and the control flow
within tasks implicit”

For instance, consider task “get a web page then ask user if it relevant, if yes, save local copy”.
in JS, need to write this as:

	 event Handler for web page loaded — ask if relevant

	 event Handler for user input about relevance — if yes save, if no download next web
page

	 event Handler for save complete — download next web page

	

	 Main

	 	 get list of web pages to ask about

	 	 start web page download

	 events_java/GTReader.java
Here we have our own event and handler Idea is that we want to read from the

internet. But we want to keep doing stuff. So do the read in a separate thread. When complete,
tell the main thread that reading is complete. Done using busy/wait syncing

	 	 this example is way to complex

	 fork == start a new thread

	 join == merge two threads

Problem with shared memory — synchronization. What happens when two threads read/write
to shared memory at the same time?	

	 	 As in the above programs

More generally, shared-memory systems can be subject to all of these issues:

• Data race, when two or more threads attempt to access and write the same data.
• (examples in Go and java above) Question: how can I reduce/eliminate atomiticity

violations in the counter programs
• Deadlock: when two or more threads attempt to access a shared resource protected with

locks (usually in an attempt to fix a data race!)
• see ThreadLock_java/TL.java

• Livelock: similar to deadlock, except one thread is not actually locked — it executes
continuously trying to acquire a shared resource.

 of 4 6

• Starvation: in which a process is unable to complete in the allotted time because a
resource is given to higher priority processes. (Can also occur when there are too many
threads)
• On the counter.go program
• 1000000000 * 10 threads: 38.23s user 0.47s system 707% cpu 5.469 total
• 100 * 100000000 threads: 91.51s user 12.24s system 484% cpu 21.413 total
• 10 * 1000000000 threads: 704.96s user 126.58s system 385% cpu 3:35.83 total

• Blocking suspension: when one thread waits an unacceptably long time for a resource.
Similar to starvation, but it eventually succeeds.

• Order violation: when the desired order of operations between multiple threads is
violated.

• Atomicity violation: in which two code blocks in a thread are interleaved with code
blocks in another thread, such that the result of the computation is inconsistent. In other
words, a block of code that a developer intended or expected to be atomic is not executed
atomically.

Handling the starvation problem: limit threads
First issue after simply starting threads. How do you limit the number of threads running?

	 Why do you want to limit?

	 	 Java counter_java/EPCounter.java

	 	 	 effectively the same as CCounter, but stylistically better. Idea is to use
java system that limits the number of active threads. Question: why is this a good idea?

	 	 Can accomplish the same things in Go/Rust

Two ways of breaking down a problem:

	 task parallel == break down problem into a set of “tasks”. Run these in parallel.
Problem: can only get as much parallelism as you can define tasks

	 data Parallel == break problem into smaller pieces by way of data. Then do very similar
operations on each piece. (Similar to vector level parallel from above)

Results from tasks
When tasks are running async, you do not get their return value. Why?

So you need a way of capturing the the results from the task.

Shared memory handling

	 need a method of making sure that shared memory is only used by one thread at a time

	 Lock

	 	 when you set to a point in the code, check if “lock” has been set. If yes, wait
for unlock (bathroom)

	 Monitor

	 	 set a block of code/memory that only one thread at a time can use

	 	 Java “synchronized” is essentially a monitor

	 	 Monitors probably use locks under the covers, the point is that users
(programmers) do not need to explicitly lock and unlock. (an autolocking door on a bathroom?)

	 Semaphores

	 	 basically a counter which you cannot get by unless it is 0 for you

	 	 each thread is responsible for incrementing/decrementing the semaphore

 of 5 6

	 	 Locks are semaphores with a max count of 1. But semaphores can allow more
than one. (Tables in a diner.)

	 	 	

For real world problem using shared memory

	 	 see timeJSON.go getting info about all public lab machines.

Checkpointing and long parallel runs.

 of 6 6

