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Assignment 3

Tips about writing algorithms: Whenever you are asked to present an algorithm, you should
present three things: the algorithm description (English and pseudocode), an analysis of its running
time and an (informal) proof of its correctness. Remember that your description is intended to be
read by a human, not a compiler, so conciseness and clarity are preferred over coding details. Unless
otherwise stated, you may use any results from class, or results from any standard algorithms text.
Nonetheless, be sufficiently complete so that a competent coder has all the details to implement
your algorithm. Unless otherwise stated, you may assume that any geometric primitive involving
a constant number of objects each of constant complexity can be computed in O(1) time.
Please consult this additional algorithm write-up guidelines from Analysis of Algorithm. The
requirements for algorithm write-up is more rigid in that course (well it’s the point of it). In this
class, I do not require formal proof of correctness. However, I do require informal justifications
because if you are unable to even informally argue correctness, it’s likely wrong!

1. Prove that the intersection of two convex sets is again convex.

2. Exercises 2.19 and 2.20

3. Exercise 2.22

4. Exercise 2.38 and 2.43

5. The convex hull is a somewhat non-robust shape descriptor, since if there are any distant outlying
points, they will tend to dominate the shape of the hull. A more robust method is based on the
following iterative approach. Given a planar point set P in general position (see Fig. 1(a)), let
H1 be the convex hull of P . Remove the vertices of H1 from P and compute the convex hull
of the remaining points, call it H2. Repeat this until no more points remain, letting H1, . . . ,
Hk denote the resulting hulls (see Fig. 1(b)). More formally, Hi = conv(P \ (

⋃i−1
j=1 vert(Hj))).

The final result is a collection of nested convex polygons, where the last one may degenerate to
a single line segment or a single point.

(a) Assuming that the points are in general position in R2, as a function of n, what is the
maximum number of hulls that can be generated by this process? (I am looking for an
exact formula, not an asymptotic one. For every n, there should exist a point set that
exactly achieves your bound.) Briefly justify your answer.

(b) Given a set P of n points in the plane, devise an O(n2) time algorithm to compute this
iterated sequence of hulls. (FYI: O(nlogn) is possible, but complicated.)

(c) Prove the following lemma: Given a planar point set P in general position, let k denote
the number of hulls generated by the repeated hull process. There exists a point q in the
plane (it need not be in P ) such that, every closed halfplane whose bounding line l passing
through q contains at least k points of P . (Recall that a closed halfplane is the set of points
lying on or to one side of a line. An example of such a point for k = 4 is shown in Fig.
1(c).)

http://www.cs.brynmawr.edu/cs340/info/algorithm_guidelines.pdf


2

CMSC 754:Spring 2012 Dave Mount

Homework 1: Convex Hulls, Plane Sweep, and More

Handed out Tuesday, Feb 14. Due at the start of class Tuesday, Feb 21. Late homeworks will not be accepted
so turn in whatever you have finished. Unless otherwise specified, you may assume that points are in general
position.

Problem 1. As mentioned in class, the convex hull is a somewhat non-robust shape descriptor, since if
there are any distant outlying points, they will tend to dominate the shape of the hull. A more robust
method is based on the following iterative approach. Given a planar point set P in general position (see
Fig. 1(a)), let H1 be the convex hull of P . Remove the vertices of H1 from P and compute the convex
hull of the remaining points, call it H2. Repeat this until no more points remain, letting H1, . . . , Hk

denote the resulting hulls (see Fig. 1(b)). More formally, Hi = conv(P \ (
⋃i−1

j=1 vert(Hj))). The final
result is a collection of nested convex polygons, where the last one may degenerate to a single line
segment or a single point.
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Figure 1: Repeated hulls.

(a) Assuming that the points are in general position in R2, as a function of n, what is the maximum
number of hulls that can be generated by this process? (I am looking for an exact formula, not
an asymptotic one. For every n, there should exist a point set that exactly achieves your bound.)
Briefly justify your answer.

(b) Given a set P of n points in the plane, devise an O(n2) time algorithm to compute this iterated
sequence of hulls. (FYI: O(n log n) is possible, but quite complicated.)

(c) Prove the following lemma: Given a planar point set P in general position, let k denote the number
of hulls generated by the repeated hull process. There exists a point q in the plane (it need not be
in P ) such that, every closed halfplane whose bounding line ℓ passes through q contains at least
k points of P . (Recall that a closed halfplane is the set of points lying on or to one side of a line.
An example of such a point for k = 4 is shown in Fig. 1(c).)

Problem 2. You are given two sorted sets of numbers A = {a1, . . . an} and B = {b1, . . . , bn}. These two
sets define a collection of n2 sums, S(A, B) = {ai + bj | i, j ∈ {1, . . . , n}}. For simplicity, let us make
the “general position” assumption that S(A, B) consists of exactly n2 distinct values.

The interval sum problem is as follows. Given A and B, and given two values s− < s+, return a
count of the number of elements of S(A, B) that lie within the interval [s−, s+]. Present an efficient
algorithm to solve the interval sum problem. Your algorithm should run in O(n log n) time.

(Hint: This problem can be solved by reducing it to inversion counting, but if you don’t see the
reduction, there are other ways of obtaining the desired running time.)
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Figure 1: Nested hulls

6. Implementation Implement the naive convex hull algorithm by finding hull edges as described
below.

Input xy-coordinates of n points in the plane. Two points a and b end up on the hull if and only
if the directed line Lab through a and b has every other point on or to the left of Lab. Running
this test over all pairs of points a and b will result in the set of points that lie on the hull, with
lots of duplicates. Remove the duplicates and output (print out) the set, in ccw order. What
is the complexity of this algorithm? Time your code on an input set with 1, 000, 10, 000 and
1, 000, 000 points. How long did it take?

Implement the Graham scan convex hull algorithm and time the same input sets. What is the
time difference? Does it justify the runtime analysis?

You may use any programming language of your choice. Submit a printed copy of your code,
together with at least three test cases and printouts of sample runs on those test cases, together
with some graphical representation of the points. You can either use additional plotting software
after the fact, or use a programming language that supports easy graphical output (Procesing
would be a fine example). The test cases should be chosen to clearly demonstrate that your code
works. That is, do not include trivial cases and do include corner cases. For implementation,
you may only assume that the input points do not contain duplicates. In other words, you need
to take care of collinearity. To generate an input set, you can either use graph paper by hand
for small sizes, or use a randomized generator (remember that straight-forward randomization
tends to produce very uniformly distributed point sets, which may not be what you want). To
produce worse-case test cases for convex hull algorithms, you need to find a way to generate
points on or near a circle.

Also beware of numerical (in)stability, which is a common problem in computational geometry
algorithm implementations.

Please do not include large test cases among the three that demo the correctness of your code.
For that purpose, your input size probably doesn’t need to be larger than 20.


