
CS246 Lec03 

1 

CS246 1 Lec03 

Today’s Goals 
• char 
•  Input (getchar, scanf) 
•  Expressions 
•  Conditionals 

  if 
  switch 

•  Loops 
  while 

CS246 2 Lec03 

• sizeof(type) 
  The sizeof operator returns the number of bytes 

required to store the given type 

sizeof and Type Conversions 

Implicit conversions 
  arithmetic 
  assignment 
  function parameters 
  function return type 
  promotion if possible 

Explicit conversions 
  casting 
int x; 
x = (int) 4.0; 

Section 1 

CS246 3 Lec03 

Use of char (character) 
•  Basic operations 

  Declaration:  char c; 
  Assignment:  c = 'a'; 
  Reference:  c = c + 1; 

•  Constants 
  Single-quoted character (only one) 
  Special characters:  '\n', '\t' (tab), 
'\"' (double quote), '\'' (single quote), '\
\' (backslash) 

Section 2 

CS246 4 Lec03 

•  A char type represents an integer value 
from 0 to 255 (1 byte) or –128 to 127. 

•  A single quoted character is called a 
“character constant”. 

•  C characters use ASCII representation: 
•  'A' = 65 … 'Z' = 'A' + 25 = 90 
•  'a' = 97 … 'z' = 'a' + 25 = 122 
•  '0'!= 0 (48), '9' - '0' = 9 
•  Never make assumptions of char values 

  Always write 'A' instead of 65 

Characters are Integers 

CS246 5 Lec03 

ASCII Table 
American Standard Code 
for Information Interchange 
A standard way of 
representing the alphabet, 
numbers, and symbols 
(in computers) 

wikipedia on ASCII 

CS246 6 Lec03 

char Input/Output 
•  Input 

  char getchar() receives/returns a character 
  Built-in function 

•  Output 
  printf with %c specification 

int main() { 
 char c; 
 c = getchar(); 
 printf("Character >%c< has the value %d.\n", c, c); 
 return 0; 
} 

chartypes.c 



CS246 Lec03 

2 

CS246 7 Lec03 

scanf Function  
scanf("         
",   ); 

•  Format string containing special symbols 
  %d for int 
  %f for float 
  %lf for double 
  %c for char 
  \n for a newline 

•  List of variables (or expressions) 
  In the order correspoding to the % sequence  

Section 3 

CS246 8 Lec03 

scanf  Function 
•  The function scanf is the input analog of 
printf 

•  Each variable in the list MUST be prefixed 
with an &. 

•  Ignores white spaces unless format string 
contains %c 

CS246 9 Lec03 

scanf  Function 

int main() { 
  int x; 

  printf("Enter a value:\n"); 
  scanf("%d", &x); 
  printf("The value is %d.\n", 
x); 
  return 0; 
} 

CS246 10 Lec03 

scanf with multiple variables 

int main() { 
  int x; 
  char c; 
  printf("Enter an int and a char:"); 
  scanf("%d %c", &x, &c); 
  printf("The values are %d, %c.\n",  
         x, c); 
  return 0; 
} 

scanf.c 

CS246 11 Lec03 

scanf Function 
•  Each variable in the list MUST be prefixed 

with an &. 
•  Read from standard input (the keyboard) 

and tries to match the input with the 
specified pattern, one by one. 

•  If successful, the variable is updated; 
otherwise, no change in the variable. 

•  The process stops as soon as scanf 
exhausts its format string, or matching fails. 

•  Returns the number of successful matches. 
CS246 12 Lec03 

scanf Continued 
•  White space in the format string  match  any  

amount  of white  space,  including  none,  
in the input. 

•  Leftover input characters, if any, including 
one ‘\n’ remain in the input buffer, may be 
passed onto the next input function. 
  Use getchar() to consume extra characters 
  If the next input function is also scanf, it will 

ignore ‘\n’ (and any white spaces). 



CS246 Lec03 

3 

CS246 13 Lec03 

scanf Notes 
•  Beware of combining scanf and 
getchar(). 

•  Use of multiple specifications can be both 
convenient and tricky. 
   Experiment! 

•  Remember to use the return value for error 
checking. 

CS246 14 Lec03 

int main() { 
   int choice; 
   scanf("%d", &choice); //user input 

   if (choice == 1) { 
   printf("The choice was 1.\n"); 
   } 
   else { 
   printf("The choice wasn't 1.\n"); 
   } 
  return 0; 
} 

if-else  Statement 
Section 4 

menu.c 

CS246 15 Lec03 

Expressions 

•  Numeric constants and variables 
E.g., 1,  1.23,  x 

•  Value-returning functions 
E.g., getchar() 

•  Expressions connected by an operator 
E.g., 1 + 2,   x * 2,   getchar()-1 

•  All expressions have a type 

CS246 16 Lec03 

Boolean Expressions 
•  C does not have type boolean 

•  False is represented by integer 0 

•  Any expression evaluates to non-zero is 
considered true 

•  True is typically represented by 1 however 

CS246 17 Lec03 

Conditional Expressions 
•  Equality/Inequality 

  if (x == 1) 
  if (x != 1) 

•  Relation 
  if (x > 0) 
  if (x >= 0) 
  if (x < 0) 
  if (x <= 0) 

==  (equality) 
=    (assignment) ≠ 

> 
≥ 
< 
≤ 

The values are internally 
represented as integer. 
true → 1 (not 0), false →  0 

CS246 18 Lec03 

Assignment as Expression 
•  Assignment 

  Assignments are expressions 
  Evaluates to value being assigned 

•  Example 
int x = 1, y = 2, z = 3; 
x = (y = z); 
3    3   3 

evaluates to 3 
if (x = 3) { 
   ... 
} 

evaluates to 3 (true) 



CS246 Lec03 

4 

CS246 19 Lec03 

Complex Condition 

•  And 
if ((x > 0) && (x <= 10)) 

•  Or 
if ((x > 10) || (x < -10)) 

•  Negation 
if (!(x > 0)) 

0 < x ≤ 10 

x> 10 

not (x > 0)  ⇔  x ≤ 0 

Beware that & and | are also C operators 

CS246 20 Lec03 

Lazy Logical Operator Evaluation 

•  If the conditions are sufficient 
to evaluate the entire 
expression, the evaluation 
terminates at that point => lazy 

•  Examples 
 if ((x > 0) && (x <= 10)) 

 Terminates if (x > 0) fails 
 if ((x > 10)&&(x < 20))||(x < -10)) 

 Terminates if (x > 10) && (x < 20) succeeds 

CS246 21 Lec03 

Use of Braces 

if (choice == 1) { 
  printf("1\n"); 
} 
else { 
  printf("Other\n"); 
} 

When the operation is  
a single statement,  
'{' and '}' can be omitted. 

if (choice == 1) 
  printf("1\n"); 
else 
  printf("Other\n"); 

CS246 22 Lec03 

switch Statement 

switch (integer expression) { 
case constant: 
  statements 
  break; 
case constant: 
  statements 
  break; 
possibly more cases 
default: 
  statements 
} 

Multi-branching 

CS246 23 Lec03 

break Fall Through 
•  Omitting break in a switch statement 

will cause program control to fall through to 
the next case 

•  Can be a very convenient feature 
•  Also generates very subtle bugs 
• switch statements only test equality with 

integers 

CS246 24 Lec03 

Example 
int x, y, result = 0; scanf("%d %d", &x, &y); 
switch(x) { 
  case 1: break; 
  case 2: 
  case 3: result = 100; 
  case 4: 
    switch(y) { 
      case 5: result += 200; break; 
      default: result = -200; break; 
    } 
    break; 
    default: result = 400; break; 
} 



CS246 Lec03 

5 

CS246 25 Lec03 

while  Loops 
Section 5 

while (true) {   
  /* some operation */ 
} 

CS246 26 Lec03 

while  and Character Input 
• EOF is a constant defined in stdio.h 

  Stands for End Of File 

int main() { 
  int nc = 0, nl = 0; char c; 
  while ((c = getchar()) != EOF) { 
    nc++; 
    if (c == '\n') nl++; 
  } 
  printf("Number of chars is %d and number of 
        lines is %d\n", nc, nl); 
  return 0; 
} 

charloop.c 

CS246 27 Lec03 

Review:Assignment has value 
•  In C, assignment expression has a value, 

which is the value of the lefthand side after 
assignment. 

•  Parens in(c = getchar()) != EOF are 
necessary. 

•  c = getchar() != EOF is equivalent to 
 c = (getchar() != EOF)  

•   c gets assigned 0 or 1. 

CS246 28 Lec03 

Summary 
•  C and Java’s conditionals and loops are 

very similar 
•  C does not support booleans, uses 0 and 1 

(not 0) instead 
•  Learn how to use scanf and getchar, 

especially with input loops 
•  Learn how C handles characters 


