
CS246 Lec07

1

CS246 1 Lec07

Today’s Goals

•  Number Systems
•  Pointers

  Declaration
  Assignment
  Indirection/de-referencing

CS246 2 Lec07

Decimal Number System

123
= 1 × 100 + 2 × 10 + 3
= 1 × 102 + 2 × 101 + 3 × 100

= 12310

Section 1

(Base-10 number system)

base

CS246 3 Lec07

Binary Number System

1012
= 1 × 22 + 0 × 21 + 1 × 20
= 1 × 4 + 0 × 2 + 1
= 510

(Base-2 number system)

Bit: Binary Digit

CS246 4 Lec07

Capacity of Binary Numbers

•  1 bit can distinguish 2 states (0 or 1).
•  An n-bit binary number can distinguish 2n

states.

CS246 5 Lec07

Octal Number System

1738
= 1 × 82 + 7 × 81 + 3 × 80
= 1 × 64 + 7 × 8 + 3
= 12310

(Base-8 number system)

CS246 6 Lec07

Hexadecimal Number System

9AB16
= 9 × 162 + 10 × 161 + 11 × 160
= 9 × 256 + 10 × 16 + 11
= 247510

(Base-16 number system)
Character correspondence:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 A B C D E F

ex

CS246 Lec07

2

CS246 7 Lec07

Byte

1 Byte
•  100011012
•  8 bits – can distinguish 256 (28) states
•  Representable by 2 hexadecimal characters
•  100011012
 816 D16

CS246 8 Lec07

Kilobyte – KB
•  Commonly denoted as KB, Kb, Kbyte or

just K.
•  Equal to 1000 or 1024 () bytes,

depending on whom you ask.
•  One Kb then can distinguish

CS246 9 Lec07

Base-k-to-Decimal Conversion
•  1012

 = 1 × 22 + 0 × 21 + 1 × 20
 = 1 × 4 + 0 × 2 + 1
 = 510

•  k =
 = × k2 + × k1 + × k0
 = ?10

Section 2

More generally

CS246 10 Lec07

Decimal-to-Binary Conversion

2) 5
2) 2 ... 1 ← the rightmost bit (LSB)
 1 ... 0 ← the second bit from the right
 ↑
the leftmost bit (MSB)
MSB = Most Significant Bit
LSB = Least Significant Bit

510 = 1012

CS246 11 Lec07

16) 2475
16) 154 ... 11 ← the rightmost bit (LSB)
 9 ... 10 ←second bit from the right
 ↑
the leftmost bit (MSB)
Decimal to Base-k conversions work the
same way

Decimal to hexadecimal

247510 = 9AB16

CS246 12 Lec07

Common C Data Types

•  Based on 32-bit architecture
•  Shaded values are approximate.
•  Precision of float is 6 digits, double is 9-15 digits.

Section 3

Double stands for “double-precision floating point”.

CS246 Lec07

3

CS246 13 Lec07

Variable and Address
•  Variable = Storage in computer

memory
  Contains some value
  Must reside at a specific location

called address
  Basic unit – byte
  Imagine memory as a one-

dimensional array with addresses
as byte indices

  A variable consists of one or more
bytes, depending on its type (size)

Memory
70
31
4
6
30
1
10
4
6
95

201
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

char

int

Section 4

CS246 14 Lec07

Pointer – Reference
•  A pointer (pointer variable) is a variable that

stores an address (like Java reference)
  value – address of some memory
  type – size of that memory

•  Recall in Java, when one declares variables
of a class type, these are automatically
references.

•  In C, pointers have special syntax and much
greater flexibility.

CS246 15 Lec07

Memory and Address
•  A machine with 16 Megabytes of memory

has ? bytes
•  Since each byte has a unique address, there are

at least that many addresses
•  A pointer stores a memory address, thus the

size of a pointer is machine dependent
•  With most data models it is the largest integer

on the machine, size of unsigned long
•  Defined in inttypes.h

  uintptr_t and uintmax_t
CS246 16 Lec07

Address Operations in C

•  Declaration of pointer variables
  The pointer declarator ‘*’

•  Use of pointers
  The address of operator ‘&’
  The indirection operator ‘*’ – also known as

de-referencing a pointer

Section 5

CS246 17 Lec07

Pointer Declaration
•  Syntax

  destinationType * varName;

•  Must be declared with its associated type.
•  Examples

  int *ptr1;
 A pointer to an int variable

  char *ptr2;
 A pointer to a char variable

ptr1

ptr2

will contain addresses

CS246 18 Lec07

Pointers are NOT integers
•  Although memory addresses are essentially

very large integers, pointers and integers are
not interchangeable.

•  Pointers are not of the same type
•  A pointer’s type depends on what it points to

  int *p1; // sizeof(int)
  char *p2; // sizeof(char)

•  C allows free conversion btw different pointer
types via casting (dangerous)

CS246 Lec07

4

CS246 19 Lec07

Address of Operator
•  Syntax

  & expression
 The expression must have an address. E.g., a
constant such as “1” does not have an address.

•  Example
  int x = 1;
 f(&x);
 The address of x (i.e. where x is stored in
memory), say, the memory location 567, (not 1)
is passed to f.

x 1
address = 567

CS246 20 Lec07

Pointer Assignment
•  A pointer p points to x if x’s address is

stored in p
•  Example

  int x = 1;
 int *p;
 p = &x;

 Interpreted as:

p 567

x 1
address = 567

p x 1

CS246 21 Lec07

Pointer Diagram

0012FF88 8

ip i (@0012FF88)

int i = 8;
int *ip;

ip = &i;

CS246 22 Lec07

Pointer Assignment
•  A pointer p points to x if x’s address is

stored in p
•  Example

  int x = 1;
 int *p, *q;

 p = &x;
 q = p;
 Interpreted as:

p 567

x 1
address = 567

p x 1

q 567

q

CS246 23 Lec07

Pointer Assignment
•  Example

  int x=1, y=2, *p, *q;
 p = &x; q = &y;
 q = p;

p 567

y 2
address = 988

q 988

x 1
address = 567

567

CS246 24 Lec07

Indirection Operator
•  Syntax

  * pointerVar
  Allows access to value of memory being pointed to
  Also called dereferencing

•  Example
  int x = 1, *p;
 p = &x;
 printf("%d\n", *p);
 *p refers to x; thus prints 1

p x 1

Note: ‘*’ in a declaration and ‘*’
in an expression are different.
int *p; int * p; int* p;

CS246 Lec07

5

CS246 25 Lec07

Assignment Using Indirection Operator

•  Allows access to a variable indirectly through
a pointer pointed to it.

•  Pointers and integers are not interchangeable
•  Example

  int x = 1, *p;
 p = &x;
 *p = 2;
 printf("%d\n", x);
  *p is equivalent to x

p x 1

p x 2

CS246 26 Lec07

Schematically

int x = 1;

int *p;

p = &x;

printf("%d", *p);

*p = 2;

printf("%d", x);

x 1

p

prints 1

x 1

p

prints 2

x 2

p

CS246 27 Lec07

Summary

•  Pointer and integers are not exchangeable
•  Levels of addressing (i.e. layers of pointers)

can be arbitrarily deep
•  Remember the & that you MUST put in

front of scanf variables?
•  Failing to pass a pointer where one is

expected or vise versa always leads to
segmentation faults.

